当前位置:   article > 正文

多模态大语言模型(MLLMs)-一般架构(非常详细)零基础入门到精通,收藏这一篇就够了

多模态大语言模型

多模态大语言模型(Multimodal Large Language Model , MLLM),在LLM原有的强大泛化和推理能力基础上,进一步引入了多模态信息处理能力。相比于以往的多模态方法,例如以 CLIP 为代表的判别式,或以 OFA 为代表的生成式,新兴的 MLLM 展现出一些典型的特质,在下面这两种特质的加持下,MLLM 涌现出一些以往多模态模型所不具备的能力!

  • 模型大。MLLM 通常具有数十亿的参数量,更多的参数量带来更多的潜力;

  • 新的训练范式。为了激活巨大参数量的潜力,MLLM 采用了多模态预训练、多模态指令微调等新的训练范式,与之匹配的是相应的数据集构造方式和评测方法等。

下面主要介绍一下MLLM的模型架构。

1 模型架构

对于多模态输入-文本输出的典型 MLLM,其架构一般包括模态编码器、连接器以及 LLM。如要支持更多模态的输出(如图片、音频、视频),一般需要额外接入生成器,如下图所示:

**模态编码器(Modality Encoder)**负责将原始的信息(如图片)编码成特征,连接器(Connector)则进一步将特征处理成LLM 易于理解的形式,即视觉 Token。LLM 则作为“大脑”综合这些信息进行理解和推理,生成回答。目前,三者的参数量并不等同,以 Qwen-VL为例,LLM 作为“大脑”参数量为 7.7B,约占总参数量的 80.2%,视觉编码器次之(1.9B,约占 19.7%),而连接器参数量仅有 0.08B

2 模态编码器

**模态编码器(Modality Encoder)**主要是将其他的非文本模型信息编码成易于 LLM 可用的特征信息,并且编码器编码的特征大小会影响视觉特征输入到LLM模型中的信息量。例如,对于视觉编码器而言,增大输入图片的分辨率是提升性能的有效方法。一种方式是直接提升分辨率,这种情况下需要放开视觉编码器进行训练以适应更高的分辨率。另一种方式是将大分辨率图片切分成多个子图,每个子图以低分辨率送入视觉编码器中,这样可以间接提升输入的分辨率。

3 LLM

常用的包括LLM包括 LLaMA系列、Qwen系列和 InternLM系列等,前者主要支持英文,而后两者中英双语支持得更好。就性能影响而言,加大 LLM 的参数量可以带来显著的性能增益,如 LLaVA-NeXT在 7B/13B/34B 的 LLM 上进行实验,发现提升LLM 大小可以带来各 benchmark 上的显著提升,在 34B 的模型上更涌现出 zero-shot 的中文能力。除了直接增大 LLM 参数量,近期火热的 MoE 架构则提供了更高效实现的可能性,即通过稀疏计算的方式,在不增大实际计算参数量的前提下提高总的模型参数量。

4 连接器

**连接器(Connector)**主要作用是进一步将非文本特征处理(如视觉特征)成适合LLM的输入token格式。相对前两者来说,连接器的重要性略低,其不如视觉 token 数量(决定之后 LLM 可用的视觉信息)及图片的分辨率(决定视觉编码器的输入信息量)重要。

5 生成器

生成器(Generator**)**一般而言是可选的,其主要作用是对LLM输出特征进行非文本多模态的内容生成,生成器可以支持更多模态的输出(如图片、音频、视频),弥补了LLM的多模态生成能力不足的缺点。例如:

  • 图像生成:根据文本描述,利用LLM输出特征生成对应的图像。

  • 视频生成:根据文本描述利用LLM输出特征生成视频内容,或将图片序列生成视频。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/907195
推荐阅读
相关标签
  

闽ICP备14008679号