当前位置:   article > 正文

打卡第22天------回溯算法

打卡第22天------回溯算法

开始学习了,希望我可以尽快成功上岸!

一、回溯理论基础
  • 什么是回溯法?

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯是递归的副产品,只要有递归就会有回溯。

  • 回溯法的效率

回溯法的本质是穷举,穷举所有可能,然后找出我们想要的答案。如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

组合无序,排列有序。

  • 回溯法模板

回溯三部曲,可以按照如下步骤:

  1. 回溯函数模板返回值以及参数

  2. 回溯函数终止条件

  3. 回溯搜索的遍历过程 

回溯函数遍历过程伪代码如下:

  1. for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
  2. 处理节点;
  3. backtracking(路径,选择列表); // 递归
  4. 回溯,撤销处理结果
  5. }

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

分析完过程,回溯算法模板框架如下:

  1. void backtracking(参数) {
  2. if (终止条件) {
  3. 存放结果;
  4. return;
  5. }
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/908941?site
推荐阅读
相关标签
  

闽ICP备14008679号