赞
踩
将代码投入生产时,你很可能需要处理代码文件的组织。读取、创建和运行许多数据文件非常耗时。本文将向你展示如何自动
这些技巧为我在数据科学项目中节省了很多时间。我希望你也会发现它们有用!
如果我们要像这样读取和处理多个数据:
├── data│ ├── data1.csv│ ├── data2.csv│ └── data3.csv└── main.py
我们可以尝试一次手动读取一个文件
import pandas as pd def process_data(df): passdf = pd.read_csv(data1.csv)process_data(df)df2 = pd.read_csv(data2.csv)process_data(df2)df3 = pd.read_csv(data3.csv)process_data(df3)
当我们有3个以上的数据时,这是可以的,但不是有效的。如果我们在上面的脚本中只更改了数据,为什么不使用for循环来访问每个数据呢?
下面的脚本允许我们遍历指定目录中的文件
import osimport pandas as pddef loop_directory(directory: str): '''循环目录中的文件''' for filename in os.listdir(directory): if filename.endswith(".csv"): file_directory = os.path.join(directory, filename) print(file_directory) pd.read_csv(file_directory) else: continueif __name__=='__main__': loop_directory('data/')
data/data3.csvdata/data2.csvdata/data1.csv
以下是对上述脚本的解释
现在我们可以访问“data”目录中的所有文件!
有时,我们可能希望创建嵌套文件来组织代码或模型,这使得将来更容易找到它们。例如,我们可以使用“model 1”来指定特定的特征工程。
在使用模型1时,我们可能需要使用不同类型的机器学习模型来训练我们的数据(“model1/XGBoost”)。
在使用每个机器学习模型时,我们甚至可能希望保存模型的不同版本,因为模型使用的超参数不同。
因此,我们的模型目录看起来像下面这样复杂
model├── model1│ ├── NaiveBayes│ └── XGBoost│ ├── version_1│ └── version_2└── model2 ├── NaiveBayes └── XGBoost ├── version_1 └── version_2
对于我们创建的每个模型,手动创建一个嵌套文件可能需要很多时间。有没有办法让这个过程自动化?是的,os.makedirs(datapath)。
def create_path_if_not_exists(datapath): '''如果不存在,则创建新文件并保存数据''' if not os.path.exists(datapath): os.makedirs(datapath) if __name__=='__main__':create_path_if_not_exists('model/model1/XGBoost/version_1')
运行上面的文件,你应该会看到嵌套文件'model/model2/XGBoost/version_2'自动创建!
现在你可以将模型或数据保存到新目录中!
import joblibimport os def create_path_if_not_exists(datapath): '''如果不存在就创建''' if not os.path.exists(datapath): os.makedirs(datapath) if __name__=='__main__': # 创建目录 model_path = 'model/model2/XGBoost/version_2' create_path_if_not_exists(model_path) # 保存 joblib.dump(model, model_path)
如果我们想用不同的参数运行一个文件呢?例如,我们可能希望使用相同的脚本来使用不同的模型来预测数据。
import joblib# df = ...model_path = 'model/model1/XGBoost/version_1'model = joblib.load(model_path)model.predict(df)
如果一个脚本需要很长时间才能运行,而我们有多个模型要运行,那么等待脚本运行完毕然后运行下一个脚本将非常耗时。有没有一种方法可以告诉计算机用一个命令行运行1,2,3,10,然后去做其他的事情。
是的,我们可以用for bash for loop。首先,我们使用系统argv使我们能够解析命令行参数。如果要覆盖命令行上的配置文件,也可以使用hydra等工具。
import sysimport joblib# df = ...model_type = sys.argv[1]model_version = sys.argv[2]model_path = f'''model/model1/{model_type}/version_{model_version}'''print('Loading model from', model_path, 'for training')model = joblib.load(model_path)mode.predict(df)
>>> python train.py XGBoost 1Loading model from model/model1/XGBoost/version_1 for training
太好了!我们刚刚告诉我们的脚本使用模型XGBoost,version 1来预测命令行上的数据。现在我们可以使用bash循环遍历模型的不同版本。
如果你可以使用Python执行for循环,那么也可以在下面这样的终端上执行
$ for version in 2 3 4> do> python train.py XGBoost $version> done
键入Enter分隔行
输出:
Loading model from model/model1/XGBoost/version_1 for trainingLoading model from model/model1/XGBoost/version_2 for trainingLoading model from model/model1/XGBoost/version_3 for trainingLoading model from model/model1/XGBoost/version_4 for training
现在,你可以在使用不同模型运行脚本的同时执行其他操作!多方便啊!
祝贺你!你刚刚学习了如何同时自动读取和创建多个文件。你还学习了如何使用不同的参数运行一个文件。手动读、写和运行文件的时间现在可以节省下来,用于更重要的任务。
如果你对文章中的某些部分感到困惑,我在这个仓库中创建了具体的例子:https://github.com/khuyentran1401/Data-science/tree/master/python/python_tricks
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。