当前位置:   article > 正文

博弈树的启发式搜索_与或树的启发式搜索过程 要求搜索过程每次扩展节点时都同时扩展两层,且按一层或节

与或树的启发式搜索过程 要求搜索过程每次扩展节点时都同时扩展两层,且按一层或节

什么是博弈树

博弈过程中, 任何一方都希望自己取得胜利。因此,当某一方当前有多个行动方案可供选择时, 他总是挑选对自己最为有利而对对方最为不利的那个行动方案。 此时,如果我们站在A方的立场上,则可供A方选择的若干行动方案之间是“或”关系, 因为主动权操在A方手里,他或者选择这个行动方案, 或者选择另一个行动方案, 完全由A方自己决定。当A方选取任一方案走了一步后,B方也有若干个可供选择的行动方案, 此时这些行动方案对A方来说它们之间则是“与”关系,因为这时主动权操在B方手里,这些可供选择的行动方案中的任何一个都可能被B方选中, A方必须应付每一种情况的发生。

这样,如果站在某一方(如A方,即在A要取胜的意义下), 把上述博弈过程用图表示出来, 则得到的是一棵“与或树”。 描述博弈过程的与或树称为博弈树,它有如下特点:
  (1) 博弈的初始格局是初始节点。
  (2) 在博弈树中, “或”节点和“与”节点是逐层交替出现的。自己一方扩展的节点之间是“或”关系, 对方扩展的节点之间是“与”关系。双方轮流地扩展节点。
  (3) 所有自己一方获胜的终局都是本原问题, 相应的节点是可解节点;所有使对方获胜的终局都是不可解节点。

极大极小值分析法

在二人博弈问题中,为了从众多可供选择的行动方案中选出一个对自己最为有利的行动方案, 就需要对当前的情况以及将要发生的情况进行分析,从中选出最优的走步。最常使用的分析方法是极小极大分析法。 其基本思想是:

(1) 设博弈的双方中一方为A,另一方为B。然后为其中的一方(例如A)寻找一个最优行动方案。
(2) 为了找到当前的最优行动方案, 需要对各个可能的方案所产生的后果进行比较。具体地说, 就是要考虑每一方案实施后对方可能采取的所有行动, 并计算可(3) 为计算得分,需要根据问题的特性信息定义一个估价函数, 用来估算当前博弈树端节点的得分。此时估算出来的得分称为静态估值。
(4) 当端节点的估值计算出来后, 再推算出父节点的得分, 推算的方法是:对“或”节点, 选其子

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/378562
推荐阅读
相关标签
  

闽ICP备14008679号