当前位置:   article > 正文

开源项目推荐:3D点云处理软件CloudCompare,基于Qt和OpenGL_qt cloudcompare

qt cloudcompare

3D point cloud and mesh processing software,Open Source Project,Based on Qt5.

CloudCompare是一款基于GPL开源协议的3D点云处理软件,可以在Windows、MacOS和Linux上运行。我们可以通过阅读其源码来一窥3D点云处理的基本算法,也可以通过设计新的plugin来拓展本软件。

CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能。此外,由于大多数点云都是由地面激光扫描仪(例如LMI)采集的,CloudCompare的目的是在一台标准笔记本电脑上处理大规模的点云——通常超过1000万个点云。例如在一台带有双核处理器的笔记本电脑上,计算出300万个点到14000个三角形网格的距离需要10秒。

1、官网

http://www.cloudcompare.org/

http://www.cloudcompare.org/forum/

  • 主程序源码,基于Qt5

https://github.com/CloudCompare/CloudCompare

  • CCLib库(包含核心算法)

https://github.com/CloudCompare/CCCoreLib

  • 其他组件:

https://github.com/CloudCompare/CloudCompare/tree/master/libs

qCC_db(数据库)

qCC_io(文件I/O库)

qCC_gl(基于OpenGL的3D显示库)

2、源码编译

准备好环境:VS2017+Qt5.12.9 x64

(1)把CCCoreLib源码包解压到CloudCompare旗下的路径

\CloudCompare-master\libs\qCC_db\extern\CCCoreLib

(2)使用cmake生成VS2017 x64的工程。其中Plugin的选项:

默认情形下,只有PLUGIN_IO_QCORE打钩。除了PLUGIN_IO_QCORE是必需品之外,CloudCompare不需要任何plugin。

有兴趣的读者,可以勾选PLUGIN_EXAMPLE_???这几个插件学习研究一下下。

(3)一键编译到底,成功!最终会生成两个exe,分别是主程序CloudCompare和小工具ccViewer。

\CloudCompare-master\build64\qCC\Debug\CloudCompare.exe

\CloudCompare-master\build64\ccViewer\Debug\ccViewer.exe

如果勾选了插件文件,则需要手动把.dll文件拷贝到以下路径:

\CloudCompare-master\build64\qCC\Debug\data\plugins

(4)ccViewer是配套的小工具,可以查看3d视图。它支持很多种文件格式,最简单的是txt文本。

我们输入以下xyz坐标,即可查看3d效果。

3、参考文献

《CloudCompare:三维点云(网格)编辑和处理工具》

微信公众号:点云PCL ,作者:dianyunPCL

《基于Qt的OpenGL点云显示基本框架》

基于Qt的OpenGL点云显示基本框架_行且歌的博客-CSDN博客_opengl显示点云

我的另一篇博文:

开源项目推荐:OpenGL之Qt专辑;重点是ccViewer和libQGLViewer_libaineu2004的博客-CSDN博客_opengl开源项目

x、题外话

(1)点云库

PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的结晶,那么PCL就在3D信息获取与处理上具有同等地位,PCL是BSD授权方式,可以免费进行商业和学术应用。

https://pointclouds.org/

https://www.pclcn.org/ 

(2)一个精简的开源点云库

Cilantro是一个精简高效的点云数据处理库,编程是C++,依赖项较少,但是相比较于PCL来说,代码更有可读性,PCL中大量的使用C++高级特性,阅读起来比较难并且不易重构拆解代码,而cilantro重点放在了3D案例上,尽量减少了样板代码的数量,包含了对点云常见的操作,是一个比较简单易懂的API,所以该库可以被广泛的模块化,并且支持多维度数据进行操作,同时保证对算法模块的模块化和可扩展性。作者是一位在Magic leap公司工作的计算机视觉工程师,是马里兰大学伯克利分校的计算机科学博士,是感知机器人小组的成员。

https://github.com/kzampog/cilantro

(3)免费的几何库

http://geometryhub.net/overview

BGL (Basic Geometry Library) 包含了三维数据处理最基础的数据结构。用户可以很方便的使用它来开发各种几何相关的算法。

它是免费的,可以无限制的使用,包括科研,商业产品等。

http://geometryhub.net/bgl

Geometry++

Geometry++是一个支持多平台的三维数据处理几何库,可以作为三维数据处理软件的几何引擎来使用

http://geometryhub.net/geometryplusplus

Magic3D

Magic3D提供了三维点云和网格数据处理的基本功能。所有功能的几何算法采用了BGLGeometry++几何库

http://geometryhub.net/magic3d

(4)三维深度学习之pointnet

PointNet

PointNet++

https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet2

---

姊妹篇

开源项目推荐:3D点云处理开源库PCL和Open3d_libaineu2004的博客-CSDN博客_open3d pcl

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/394145
推荐阅读
相关标签
  

闽ICP备14008679号