赞
踩
消息的重复问题
RabbitMQ是一款开源的,Erlang编写的,消息中间件; 最大的特点就是消费并不需要确保提供方存在,实现了服务之间的高度解耦,可以用它来:解耦、异步、削峰。
(1)服务间异步通信
(2)顺序消费
(3)定时任务
(4)请求削峰
由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。
simple模式(即最简单的收发模式)
自动从队列中删除(隐患:消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。
work工作模式(资源的竞争)
消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用)。
**publish/subscribe发布订阅(共享资源) **
routing路由模式
topic 主题模式(路由模式的一种)
(看来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式)
拆分多个 queue(消息队列),每个 queue(消息队列) 一个 consumer(消费者),就是多一些 queue(消息队列)而已,确实是麻烦点;或者就一个 queue (消息队列)但是对应一个 consumer(消费者),然后这个 consumer(消费者)内部用内存队列做排队,然后分发给底层不同的 worker 来处理。
若该队列至少有一个消费者订阅,消息将以循环(round-robin)的方式发送给消费者。每条消息只会分发给一个订阅的消费者(前提是消费者能够正常处理消息并进行确认)。通过路由可实现多消费的功能。
消息提供方->路由->一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后, RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则);
常用的交换器主要分为一下三种:
由于 TCP 连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。RabbitMQ使用信道的方式来传输数据。信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。
比如:在写入消息队列的数据做唯一标示,消费消息时,根据唯一标识判断是否消费过;假设你有个系统,消费一条消息就往数据库里插入一条数据,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下是否已经消费过了,若是就直接扔了,这样不就保留了一条数据,从而保证了数据的正确性
发送方确认模式
接收方确认机制
下面罗列几种特殊情况
消息不可靠的情况可能是消息丢失,劫持等原因;
丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;
从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息;transaction机制就是说:发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。然而,这种方式有个缺点:吞吐量下降;
confirm模式用的居多:一旦channel进入confirm模式,所有在该信道上发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后;rabbitMQ就会发送一个ACK给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了;
如果rabbitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
2. 消息队列丢数据:消息持久化。
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。
这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。
那么如何持久化呢?这里顺便说一下吧,其实也很容易,就下面两步
* 将queue的持久化标识durable设置为true,则代表是一个持久的队列
* 发送消息的时候将deliveryMode=2,这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据
消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!
消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;如果这时处理消息失败,就会丢失该消息;
解决方案:处理消息成功后,手动回复确认消息。
意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。
你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。
3. 镜像集群模式:
这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
这样的好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!RabbitMQ一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
RabbitMQ通过单一的生产者和单一的消费者可以保证消息的顺序。如果需要多个消费者处理消息,则可以通过设置公平分发策略或使用“autorecknowledge”模式来保证消息的处理顺序。
RabbitMQ通过提供集群功能来处理高并发场景下的性能问题。通过将多个节点组成一个集群,可以实现负载均衡和分发,提高系统的整体处理能力。同时,还可以通过调整各种参数来优化性能,如调整消息的持久化设置、调整交换机和队列的匹配规则等。
RabbitMQ支持消息的优先级处理。可以通过设置消息的优先级字段来实现,优先级高的消息会优先被消费者消费。此外,还可以通过使用优先级队列来实现更细粒度的优先级控制。
RabbitMQ通过插件支持延迟队列的实现。延迟队列是指将消息放入队列中等待一段时间后再进行处理。要实现延迟队列,可以使用RabbitMQ的插件“rabbitmq_delayed_message_exchange”,它提供了一个延迟交换器(Delayed Message Exchange),可以将消息路由到指定的队列中等待指定的延迟时间。
RabbitMQ通过插件支持优先级队列的实现。优先级队列是指根据消息的优先级进行排序和处理的队列。要实现优先级队列,可以使用RabbitMQ的插件“rabbitmq_priority_queue”,它提供了一个优先级队列交换机(Priority Queue Exchange),可以将具有不同优先级的消息路由到不同的队列中。
RabbitMQ通过插件支持死信队列的实现。死信队列是指当消息无法被成功消费或处理时,将其放入指定的死信队列中。要实现死信队列,可以使用RabbitMQ的插件“rabbitmq_dead_letter_exchange”,它提供了一个死信交换机(Dead Letter Exchange),可以将无法被处理的消息路由到指定的死信队列中。
itMQ通过插件支持优先级队列的实现。优先级队列是指根据消息的优先级进行排序和处理的队列。要实现优先级队列,可以使用RabbitMQ的插件“rabbitmq_priority_queue”,它提供了一个优先级队列交换机(Priority Queue Exchange),可以将具有不同优先级的消息路由到不同的队列中。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
b8QEy-1712821469271)]
[外链图片转存中…(img-k2JbJgPr-1712821469272)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-Ap877Ibb-1712821469272)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。