赞
踩
OCR英文全称是Optical Character Recognition,中文叫做光学字符识别。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。
一.按主题划分:手写体识别和印刷体识别。
1.印刷体大多都是规则的字体,技术上的难点是,在印刷过程中字体很可能变得断裂或者墨水粘连,使得OCR识别异常困难。当然这些都可以通过一些图像处理的技术帮他尽可能的还原,进而提高识别率。总的来说,单纯的印刷体识别在业界已经能做到很不错了,但说100%识别是肯定不可能的,但是说识别得不错那是没毛病。
2.手写体识别一直是OCR界一直想攻克的难关,但是时至今天,识别难度还是很大。为什么手写体识别这么难识别?因为人类手写的字往往带有个人特色,每个人写字的风格基本不一样,虽然人类可以读懂你写的文字,但是机器缺很难。印刷体一般都比较规则,字体都基本就那几十种,机器学习这几十种字体并不是一件难事,但是手写体,每个人都有一种字体的话,那机器该学习多少字体啊?这就是难度所在。
二.按识别的内容来分类,对于我们国人来说主要分成三类:汉字、英文字母、阿拉伯数字。识别数字是最简单了,毕竟要识别的字符只有0~9,而英文字母识别要识别的字符有26个(如果算上大小写的话那就52个),而中文识别,要识别的字符高达数千个因为汉字的字形各不相同,结构非常复杂(比如带偏旁的汉字)如果要将这些字符都比较准确地识别出来,是一件相当具有挑战性的事情。但是,并不是所有应用都需要识别如此庞大的汉字集,比如车牌识别,我们的识别目标仅仅是数十个中国各省和直辖市的简称,难度就大大减少了。当然,在一些文档自动识别的应用是需要识别整个汉字集的,所以要保证识别的整体的识别还是很困难的。
整个OCR流程就走完了。从大的模块总结而言,一套OCR流程可以分为:
版面分析 -> 预处理-> 行列切割 -> 字符识别 -> 后处理识别矫正
从上面的流程图可以看出,要做字符识别并不是单纯一个OCR模块就能实现的(如果单纯的OCR模块,识别率相当低),都要各个模块的组合来保证较高的识别率。
文本检测和识别的汇总(大容量版):https://blog.csdn.net/peaceinmind/article/details/51387367
文本检测和识别汇总(详细版):https://blog.csdn.net/Extremevision/article/details/86362066
17-18年高水平文本检测和识别:https://blog.csdn.net/alibabazhouyu/article/details/82828466
现在大家主要研究如何把文字在复杂场景读出来,并且读得准确作为研究课题,用学界术语来说,就是场景文本识别(文字检测+文字识别)。以及之前未解决的手写字符识别的问题。后面会更一篇文本检测和文本识别详细的博客。
参考链接:https://www.cnblogs.com/skyfsm/p/7923015.html
参考链接:https://zhuanlan.zhihu.com/p/52335619
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。