当前位置:   article > 正文

AI赋能自动化测试:智能接口自动化测试数据生成平台设计思路_ai做接口测试

ai做接口测试

目录

1.背景

2.名词解释

3.设计目标

4.设计思路及折衷

4.1阶段性任务

4.2方案选型

4.2.1 设计方案选型

4.2.1.1 原始数据获取模块

4.2.1.2 数据构造模块

4.2.1.3 预执行模块

4.2.1.4 覆盖率反馈调整模块

4.2.1.5 预测模型

4.2.2 技术选型

5.系统设计

5.1 项目架构 

 5.2 流程图

​编辑

5.3 模块详细设计

5.3.1 原始数据获取模块

5.3.2 数据构造模块 

5.3.3 预执行模块 

 5.3.4 覆盖率反馈调整

5.3.5 预测模型 

5.3.5.1 定义问题

5.3.5.2 数据处理

5.3.5.3 训练模型

5.3.5.4 部署上线


1.背景


1)目前自动化测试用例维护成本极高且维护人员缺乏维护“兴趣”;

2)现有自动化数据生成方案,数据质量和量级难以均衡保障;

3)公司内部测试提效平台繁多,缺乏核心部件测试数据,没有测试数据就无法很好的接入使用各类提效平台。

2.名词解释


例子:根据天气情况预测是否可以打球

数据集:机器学习使用的数据集合被称为“数据集”

样本:数据集中的每一个数据

特征:像气象信息中的天气、温度、湿度这些数据

标签:“是否可以打球”就是机器学习根据当天数据做的一个概括性结论

模型:获得基于天气特征来判断是否适合打球的“理论依据”

学习/训练:从数据集中“学得”模型的过程

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/658934
推荐阅读
相关标签
  

闽ICP备14008679号