当前位置:   article > 正文

opencv图像拼接【二】_cv图像拼接流程示意图

cv图像拼接流程示意图

  在opencv图像拼接【一】中,实现了图像的直接连接,那么本文将实现基于特征匹配的图像融合,就是两幅图像中会有相同的部分,根据图像中相同的特征,实现图像的“拼接”。

原图

特征点检测

特征点匹配

扭曲变换

融合处理

其实可以看到,两张图的颜色是有区别的。

具体步骤
(1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 ;
(2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 ;
(3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换;
(4)将左图(右图)加入到变换后的图像的左侧(右侧)获得最终图像;

# -*- coding:utf-8 -*-

import cv2 as cv
import numpy as np

def sift_keypoints_detect(image):
    # 将图像转换为灰度图
    grayImg = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

    sift = cv.xfeatures2d.SIFT_create()                
    
    # keypoints:特征点向量,向量内的每一个元素是一个KeyPoint对象,包含了特征点的各种属性信息(角度、关键点坐标等)
    # features:表示输出的sift特征向量,通常是128维的
    keypoints, features = sift.detectAndCompute(image, None)
    
    # cv.drawKeyPoints():在关键点处绘制一个小圆圈
    # 如果传递标志flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,它将绘制一个大小为keypoint的圆圈并显示它的方向
    # 这种方法同时显示图像的坐标,size和方向,是最能显示特征的一种绘制方式
    keypoints_image = cv.drawKeypoints(
        grayImg, keypoints, None, flags=cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
    
    # 返回带关键点的图像、关键点和sift的特征向量
    return keypoints_image, keypoints, features

# 使用KNN检测来自左右图像的SIFT特征,随后进行匹配
def get_feature_point_ensemble(features_right, features_left):
    # 创建BFMatcher对象解决匹配
    bf = cv.BFMatcher()
    # knnMatch()函数:返回每个特征点的最佳匹配k个匹配点
    matches = bf.knnMatch(features_right, features_left, k=2)  # des1为模板图,des2为匹配图
    # 利用sorted()函数对matches对象进行升序操作
    matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)
    # x:x[]字母可以随意修改,排序方式按照中括号[]里面的维度进行排序,[0]按照第一维排序,[2]按照第三维排序

    # 建立列表good用于存储匹配的点集
    good = []
    for m, n in matches:# ratio的值越大,匹配的线条越密集,但错误匹配点也会增多
        ratio=0.6
        if m.distance < ratio * n.distance:
            good.append(m)
    return good


# 计算视角变换矩阵H,用H对右图进行变换并返回全景拼接图像
def Panorama_stitching(image_right, image_left):
    _, keypoints_right, features_right = sift_keypoints_detect(image_right)
    _, keypoints_left, features_left = sift_keypoints_detect(image_left)
    goodMatch = get_feature_point_ensemble(features_right, features_left)

    # 当筛选项的匹配对大于4对(因为homography单应性矩阵的计算需要至少四个点)时,计算视角变换矩阵
    if len(goodMatch) > 4:
        # 获取匹配对的点坐标
        ptsR = np.float32(
            [keypoints_right[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        ptsL = np.float32(
            [keypoints_left[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        
        # ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法时),若srcPoints和dstPoints是以像素为单位的,该参数通常设置在1到10的范围内
        ransacReprojThreshold = 4
        
        # cv.findHomography():计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列),使用最小均方误差或者RANSAC方法
        # 函数作用:利用基于RANSAC的鲁棒算法选择最优的四组配对点,再计算转换矩阵H(3*3)并返回,以便于反向投影错误率达到最小
        Homography, status = cv.findHomography(
            ptsR, ptsL, cv.RANSAC, ransacReprojThreshold)

        # cv.warpPerspective():透视变换函数,用于解决cv2.warpAffine()不能处理视场和图像不平行的问题
        # 作用:就是对图像进行透视变换,可保持直线不变形,但是平行线可能不再平行
        result = cv.warpPerspective(
            image_right, Homography, (image_right.shape[1] + image_left.shape[1], image_right.shape[0]))
        
        # cv.imshow("warp convert", result)
        # cv.waitKey(0)
        # cv.destroyAllWindows()
        # 将左图加入到变换后的右图像的左端即获得最终图像
        result[0:image_left.shape[0], 0:image_left.shape[1]] = image_left
        
        # 返回全景拼接的图像
        return result


if __name__ == '__main__':
    # 注意图像顺序
    m1 = r"C:\Users\Administrator\Desktop\\133.png"
    m2 = r"C:\Users\Administrator\Desktop\\144.png"

    imgLeft = cv.imread(m1)
    imgRight = cv.imread(m2)

    # 统一尺寸
    height, width, chan = imgLeft.shape
    decrease = (width, height)
    imgRight = cv.resize(imgRight, decrease, interpolation = cv.INTER_CUBIC)
    imgLeft = cv.resize(imgLeft, decrease, interpolation = cv.INTER_CUBIC)

    # 带关键点的图像、关键点和sift的特征向量
    keypointsImgRight, keypointsRight, featuresRight = sift_keypoints_detect(imgRight)
    keypointsImgLeft, keypointsLeft, featuresLeft = sift_keypoints_detect(imgLeft)

    hm1 = np.hstack((keypointsImgLeft, imgRight))
    hm2 = np.hstack((imgLeft, keypointsImgRight))
    hm = np.vstack((hm1, hm2))
    cv.imshow("keypoints mark", hm)
    cv.waitKey(0)
    cv.destroyAllWindows()
    goodMatch = get_feature_point_ensemble(featuresRight, featuresLeft)

    # cv.drawMatches():在提取两幅图像特征之后,画出匹配点对连线
    # matchColor – 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机
    matchImg = cv.drawMatches(
        imgRight, keypointsRight, imgLeft, keypointsLeft, goodMatch, None, None, None, None, flags=2)
    cv.imshow("keypoint_link", matchImg)
    cv.waitKey(0)
    cv.destroyAllWindows()

    # 把图片拼接成全景图并保存
    result = Panorama_stitching(imgRight, imgLeft)
    cv.namedWindow("panorama", cv.WINDOW_AUTOSIZE)
    cv.imshow("panorama", result)
    cv.waitKey(0)
    cv.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

参考文档
1 https://blog.csdn.net/weixin_41874898/article/details/99948387
2 https://www.cnblogs.com/bigox/p/11476948.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/81288
推荐阅读
相关标签
  

闽ICP备14008679号