当前位置:   article > 正文

LLM主流开源代表模型_llm模型有哪些

llm模型有哪些

LLM主流开源大模型介绍

1 LLM主流大模型类别

随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。

目前,市面上已经开源了各种类型的大语言模型,本章节我们主要介绍其中的三大类:

  • ChatGLM-6B:衍生的大模型(wenda、ChatSQL等)
  • LLaMA:衍生的大模型(Alpaca、Vicuna、BELLE、Phoenix、Chimera等)
  • Bloom:衍生的大模型(Bloomz、BELLE、Phoenix等)

2 ChatGLM-6B模型

ChatGLM-6B 是清华大学提出的一个开源、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。该模型使用了和 ChatGPT 相似的技术,经过约 1T 标识符的中英双语训练(中英文比例为 1:1),辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答(目前中文支持最好)。


2.1 训练目标

GLM是一种基于自回归空白填充目标的通用预训练框架。GLM 将 NLU 任务转化为包含任务描述的完形填空问题,可以通过自回归生成的方式来回答。自回归空白填充目标是指在输入文本中随机挖去一些连续的文本片段,然后训练模型按照任意顺序重建这些片段。完形填空问题是指在输入文本中用一个特殊的符号(如[MASK])替换掉一个或多个词,然后训练模型预测被替换掉的词。


GLM的实现思想(训练目标):

  1. 原始文本

x=[x1,x2,…,x6]

随机进行连续 mask,这里假设 mask 掉

[x3]

[x5,x6]

.

[x3]

[x5,x6]

替换为 [M] 标志,并打乱 Part B 的顺序。为了捕捉跨度之间的内在联系,随机交换跨度的顺序。

  1. GLM 自回归地生成 Part B。 每个片段在输入时前面加上 [S],在输出时后面加上 [E]。 二维位置编码表示不同片段之间和片段内部的位置关系。
  2. 自注意力掩码。 灰色区域被掩盖。Part A 的词语可以自我看到(图蓝色框),但不能看到 Part B。 Part B 的词语可以看到 Part A 和 Part B 中的前面的词语(图黄色和绿色框对应两个片段)。 [M] := [MASK],[S] := [START],[E] := [END]

注意:

  • Position1 和 Position2 是输入的二维编码,第一个维度表示片段在原始文本中的相对位置,第二个维度表示片段内部的相对位置。
  • 假设原始文本是

x=[x1,x2,…,x6]

,其中

[x3]

[x5,x6]

被挖去。那么,被挖去的片段在第一个维度上的位置编码就是它们在原始文本中的索引,即

[x3]

来自片段 3,

[x5,x6]

来自片段 5。在第二个维度上的位置编码就是它们在片段中的索引,即 0 和 1。因此,

x3

的二维位置编码是[3, 0],

x5

的二维位置编码是[5, 0],

x6

的二维编码是[5, 1]。

  • 同样,我们可以得到

x1

的二维位置编码是[1, 0],

x2

的位置编码是[2, 0],

x4

的位置编码是[4, 0]。


2.2 模型结构

ChatGLM-6B 采用了 prefix decoder-only 的 transformer 模型框架,在输入上采用双向的注意力机制,在输出上采用单向注意力机制。

相比原始Decoder模块,模型结构有如下改动点:

  • embedding 层梯度缩减:为了提升训练稳定性,减小了 embedding 层的梯度。梯度缩减的效果相当于把 embedding 层的梯度缩小了 10 倍,减小了梯度的范数。

  • layer normalization:采用了基于 Deep Norm 的 post layer norm。

  • 激活函数

    :替换ReLU激活函数采用了 GeLU 激活函数。

    • GeLU的特点:
      • 相比ReLU稳定且高效
      • 缓解梯度消失
  • 位置编码:去除了绝对位置编码,采用了旋转位置编码 RoPE。

2.3 模型配置(6B)
配置数据
参数6.2B
隐藏层维度4096
层数28
注意力头数32
训练数据1T
词表大小130528
最大长度2048

2.4 硬件要求
量化等级最低GPU显存(推理)最低GPU显存(高效参数微调)
FP16(无量化)13GB14GB
INT810GB9GB
INT46GB7GB

2.5 模型特点

优点:

  • 较低的部署门槛: INT4 精度下,只需6GB显存,使得 ChatGLM-6B 可以部署在消费级显卡上进行推理。
  • 更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM2-6B 序列长度达32K,支持更长对话和应用。
  • 人类类意图对齐训练

缺点:

  • 模型容量小,相对较弱的模型记忆和语言能力。
  • 较弱的多轮对话能力。
2.6 衍生应用

LangChain-ChatGLM:基于 LangChain 的 ChatGLM 应用,实现基于可扩展知识库的问答。

闻达:大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能


3 LLaMA模型

LLaMA(Large Language Model Meta AI),由 Meta AI 于2023年发布的一个开放且高效的大型基础语言模型,共有 7B、13B、33B、65B(650 亿)四种版本。

LLaMA训练数据是以英语为主的拉丁语系,另外还包含了来自 GitHub 的代码数据。训练数据以英文为主,不包含中韩日文,所有训练数据都是开源的。其中LLaMA-65B 和 LLaMA-33B 是在 1.4万亿 (1.4T) 个 token上训练的,而最小的模型 LLaMA-7B 和LLaMA-13B 是在 1万亿 (1T) 个 token 上训练的。


3.1 训练目标

在训练目标上,LLaMA 的训练目标是语言模型,即根据已有的上文去预测下一个词。

关于tokenizer,LLaMA 的训练语料以英文为主,使用了 Sentence Piece 作为 tokenizer,词表大小只有 32000。词表里的中文 token 很少,只有几百个,LLaMA tokenizer 对中文分词的编码效率比较低。

3.2 模型结构

和 GPT 系列一样,LLaMA 模型也是 Decoder-only`架构,但结合前人的工作做了一些改进,比如:

  • Pre-normalization:为了提高训练稳定性,没有使用传统的 post layer norm,而是使用了 pre layer Norm,同时使用 RMSNorm归一化函数(RMS Norm的主要区别在于去掉了减去均值的部分,简化了Layer Norm 的计算,可以在减少约 7%∼64% 的计算时间)。
  • layer normalization:采用了基于 Deep Norm 的 post layer norm。
  • 激活函数:将 ReLU 非线性替换为 SwiGLU 激活函数。
  • 位置编码:去除了绝对位置编码,采用了旋转位置编码 RoPE。
3.3 模型配置(7B)
配置数据
参数6.7B
隐藏层维度4096
层数32
注意力头数32
训练数据1T
词表大小32000
最大长度2048

3.4 硬件要求

65B的模型,在2048个80G的A100 GPU上,可以达到380 tokens/sec/GPU的速度。训练1.4T tokens需要21天。


3.5 模型特点

优点:

  • 具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿)。
  • 可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。

缺点:

  • 会产生偏见性、有毒或者虚假的内容.
  • 在中文上效果差,训练语料不包含中文或者一个汉字切分为多个 token,编码效率低,模型学习难度大。
3.6 衍生应用

Alpaca: 斯坦福大学在 52k 条英文指令遵循数据集上微调了 7B 规模的 LLaMA。

Vicuna: 加州大学伯克利分校在 ShareGPT 收集的用户共享对话数据上,微调了 13B 规模的 LLaMA。

BELLE: 链家仅使用由 ChatGPT 生产的数据,对 LLaMA 进行了指令微调,并针对中文进行了优化。

Chinese LLaMA:

  • 扩充中文词表:常见做法:在中文语料上使用 Sentence Piece 训练一个中文 tokenizer,使用了 20000 个中文词汇。然后将中文 tokenizer 与原始的 LLaMA tokenizer 合并起来,通过组合二者的词汇表,最终获得一个合并的 tokenizer,称为 Chinese LLaMA tokenizer。词表大小为 49953。

4 BLOOM模型

BLOOM系列模型是由 Hugging Face公司的BigScience 团队训练的大语言模型。训练数据包含了英语、中文、法语、西班牙语、葡萄牙语等共 46 种语言,另外还包含 13 种编程语言。1.5TB 经过去重和清洗的文本,转换为 350B 的 tokens。训练数据的语言分布如下图所示,可以看到中文语料占比为 16.2%

按照模型参数量,BLOOM 模型有 560M、1.1B、1.7B、3B、7.1B 和 176B 这几个不同参数规模的模型。


4.1 训练目标

在训练目标上,LLaMA 的训练目标是语言模型,即根据已有的上文去预测下一个词。

关于tokenizer,BLOOM 在多语种语料上使用 Byte Pair Encoding(BPE)算法进行训练得到 tokenizer,词表大小为 250880。

4.2 模型结构

和 GPT 系列一样,LLaMA 模型也是 Decoder-only 架构,但结合前人的工作做了一些改进,比如:

  • embedding layer norm:在 embedding 层后添加了一个 layer normalization,来使训练更加稳定。
  • layer normalization:为了提升训练的稳定性,没有使用传统的 post layer norm,而是使用了 pre layer Norm。
  • 激活函数:采用了 GeLU 激活函数。
  • 位置编码:去除了绝对位置编码,采用了相对位置编码 ALiBi。相比于绝对位置编码,ALiBi 的外推性更好,即虽然训练阶段的最大序列长度为 2048,模型在推理过程中可以处理更长的序列。
4.3 模型配置(176B)
配置数据
参数176B
隐藏层维度14336
层数70
注意力头数112
训练数据366B
词表大小250880
最大长度2048

4.4 硬件要求

176B-BLOOM 模型在384 张 NVIDIA A100 80GB GPU上,训练于 2022 年 3 月至 7 月期间,耗时约 3.5 个月完成 (约 100 万计算时),算力成本超过300万欧元


4.5 模型特点

优点:

  • 具有良好的多语言适应性,能够在多种语言间进行切换,且无需重新训练

缺点:

  • 会产生偏见性、有毒或者虚假的内容.
4.6 衍生应用

轩辕: 金融领域大模型,度小满在 BLOOM-176B 的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调。

BELLE: 链家仅使用由 ChatGPT 生产的数据,对 BLOOMZ-7B1-mt 进行了指令微调。


小结

主要介绍了LLM主流的开源大模型,对不同模型架构、训练目标、优缺点进行了分析和总结。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/906930
推荐阅读
相关标签
  

闽ICP备14008679号