赞
踩
语义搜索、智能问答是NLP的关键技术,目的是让用户以自然语言形式提出问题,深入进行语义分析,以更好理解用户意图,快速准确获取知识库中的信息。在用户界面上,既可以表现为搜索引擎的形式(语义检索)、也可以为问答机器人的形式(智能问答)。
在语义搜索方面,使用知识图谱技术搜索得到的信息还可以经过加工后分门别类,比如,负面消息汇总、热点事件、并购事件、公司公告、研究报告、公司上下游、行业规模等等。
问答机器人(智能问答系统)一般包括问句理解、信息检索、答案生成三个环节。问答机器人与金融知识图谱密切相关,知识图谱在语义层面提供知识的表示、存储和推理,问答机器人则从语义层面提供知识检索的入口。基于知识图谱的问答机器人相比基于文本的问答更能满足金融业务实际需求。问答机器人的实现有很多案例,例如siri和微软小冰,但是普遍的效果都不是很好,这个原因来源于他们是通识性的智能助手,需要识别的语义实体太多,难以做到多轮对话、语义消歧的作用,如果只做行业的助手,那么准确率会大大提升。
在发挥处理海量差异性数据优势方面,KGB知识图谱功能很好的发挥了大数据时代的知识图谱构建优势,能够实现以下几种功能:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。