当前位置:   article > 正文

论文阅读 BERT GPT - transformer在NLP领域的延伸

论文阅读 BERT GPT - transformer在NLP领域的延伸

不会写的很详细,只是为了帮助我理解在CV领域transformer的拓展

1 摘要

1.1 BERT - 核心

双向 编码器 加上mask做完形填空超大模型无监督预训练 需要整个模型作为pretrain weight到下游任务做fintune

1.2 GPT - 核心

自回归 解码器 无需训练 只需Prompt

2 模型架构

2.1 概览

在这里插入图片描述
在这里插入图片描述

3 区别

3.1 finetune和prompt

BERT需要全部参数进行训练
GPT不需要训练即可完成下游任务
在这里插入图片描述

3.2 transformer及训练

BERT使用双向的编码器
在这里插入图片描述

GPT使用自回归的解码器
在这里插入图片描述

总结

总结个毛

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/代码探险家/article/detail/916067
推荐阅读
相关标签
  

闽ICP备14008679号