当前位置:   article > 正文

大模型从入门到应用——LangChain:代理(Agents)-[自定义MRKL代理]_qianwen大模型使用代理

qianwen大模型使用代理

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:


本文将介绍如何创建自己的自定义MRKL Agent。MRKL Agent由三个部分组成:

  • 工具:代理可用的工具。
  • LLMChain:生成以一定方式解析的文本,以确定要采取哪个动作。
  • 代理类本身:解析LLMChain的输出,以确定要采取哪个动作。

自定义LLMChain(Custom LLMChain)

本部分将介绍如何通过创建自定义LLMChain来创建自定义MRKL代理。创建自定义代理的第一种方法是使用现有的代理类,但使用自定义LLMCain。这也是创建自定义代理的最简单方法。强烈建议使用ZeroShotAgent ,因为目前这是最通用的一个。

创建自定义LLMCain的大部分工作都归结为提示符。因为我们使用的是一个现有的代理类来解析输出,所以提示符中要生成该格式的文本是非常重要的。此外,我们目前需要一个agent_scratchpad输入变量来记录以前的操作和观察结果,这几乎总是提示符的最后一部分。但是,除了这些说明之外,我们还可以根据需要自定义提示。为了确保提示符包含适当的指令,我们将在该类上使用helper方法。ZeroShotAgenthelper方法接受以下参数:

  • tools:座席将有权访问的工具列表,用于设置提示的格式。
  • prefix:要放在工具列表前面的字符串。
  • suffix:放在工具列表后面的字符串。
  • input_variables:最后提示所期望的输入变量列表。

在下面的示例中,我们将给予我们的代理访问Google搜索,我们将定制它,我们将让它回答为盗版。

from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain import OpenAI, SerpAPIWrapper, LLMChain


search = SerpAPIWrapper()
tools = [
    Tool(
        name = "Search",
        func=search.run,
        description="useful for when you need to answer questions about current events"
    )
]


prefix = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:"""
suffix = """Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
 
Question: {input}
{agent_scratchpad}"""
 
prompt = ZeroShotAgent.create_prompt(
    tools, 
    prefix=prefix, 
    suffix=suffix, 
    input_variables=["input", "agent_scratchpad"]
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

如果感到好奇,我们现在可以看看最终的提示模板,看看它看起来像当它的所有放在一起:

print(prompt.template)
  • 1

输出:

Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
 
Search: useful for when you need to answer questions about current events
 
Use the following format:
 
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Search]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
 
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
 
Question: {input}
{agent_scratchpad}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

需要注意的是,我们能够为代理提供自定义的提示模板,即不限于由create_prompt函数生成的提示,假设它满足代理的要求。例如,对于ZeroShotAgent,我们需要确保它应该有一个以Action:开头的字符串和一个以Action Input:开头的字符串,并且两者都应该用换行符分隔。

llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)

tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)

agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)

agent_executor.run("How many people live in canada as of 2023?")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

输出:

> Entering new AgentExecutor chain...
Thought: I need to find out the population of Canada
Action: Search
Action Input: Population of Canada 2023
Observation: The current population of Canada is 38,661,927 as of Sunday, April 16, 2023, based on Worldometer elaboration of the latest United Nations data.
Thought: I now know the final answer
Final Answer: Arrr, Canada be havin' 38,661,927 people livin' there as of 2023!
 
> Finished chain.

"Arrr, Canada be havin' 38,661,927 people livin' there as of 2023!"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

多路输入 (Multiple Inputs)

代理还可以处理需要多个输入的提示:

prefix = """Answer the following questions as best you can. You have access to the following tools:"""
suffix = """When answering, you MUST speak in the following language: {language}.
 
Question: {input}
{agent_scratchpad}"""
 
prompt = ZeroShotAgent.create_prompt(
    tools, 
    prefix=prefix, 
    suffix=suffix, 
    input_variables=["input", "language", "agent_scratchpad"]
)

llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)

agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools)

agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)

agent_executor.run(input="How many people live in canada as of 2023?", language="italian")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

输出:

> Entering new AgentExecutor chain...
Thought: I should look for recent population estimates.
Action: Search
Action Input: Canada population 2023
Observation: 39,566,248
Thought: I should double check this number.
Action: Search
Action Input: Canada population estimates 2023
Observation: Canada's population was estimated at 39,566,248 on January 1, 2023, after a record population growth of 1,050,110 people from January 1, 2022, to January 1, 2023.
Thought: I now know the final answer.
Final Answer: La popolazione del Canada è stata stimata a 39.566.248 il 1° gennaio 2023, dopo un record di crescita demografica di 1.050.110 persone dal 1° gennaio 2022 al 1° gennaio 2023.
 
> Finished chain.

'La popolazione del Canada è stata stimata a 39.566.248 il 1° gennaio 2023, dopo un record di crescita demografica di 1.050.110 persone dal 1° gennaio 2022 al 1° gennaio 2023.'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

参考文献:
[1] LangChain

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/100515
推荐阅读
相关标签