赞
踩
我们一起来看一个例子,对于1000万个key的3节点KV存储,如果我们使用一致哈希算法增加1个节点,即3节点集群变为4节点集群,则只需要迁移24.3%的数据,如代码所示
package main import ( "flag" "fmt" "log" "stathat.com/c/consistent" "strconv" ) var keysPtr = flag.Int("keys", 10000, "key number") var nodesPtr = flag.Int("nodes", 3, "node number of old cluster") var newNodesPtr = flag.Int("new-nodes", 4, "node number of new cluster") func hash(key int, nodes int) int { return key % nodes } func main() { flag.Parse() var keys = *keysPtr var nodes = *nodesPtr var newNodes = *newNodesPtr c := consistent.New() for i := 0; i < nodes; i++ { c.Add(strconv.Itoa(i)) } newC := consistent.New() for i := 0; i < newNodes; i++ { newC.Add(strconv.Itoa(i)) } migrate := 0 for i := 0; i < keys; i++ { server, err := c.Get(strconv.Itoa(i)) if err != nil { log.Fatal(err) } newServer, err := newC.Get(strconv.Itoa(i)) if err != nil { log.Fatal(err) } if server != newServer { migrate++ } } migrateRatio := float64(migrate) / float64(keys) fmt.Printf("%f%%\n", migrateRatio*100) }
go run ./consistent-hash.go -keys 10000000 -nodes 3 -new-nodes 4
24.301550%
你看,使用了一致哈希算法后,我们需要迁移的数据量仅为使用哈希算法时的三分之一,是不是大大提升了效率呢?
总的来说,使用一致哈希算法在扩容或缩容时,都只需要重定位环空间中的一小部分数据。也就是说,一致哈希算法具有较好的容错性和可扩展性。需要注意的是,在哈希寻址中常出现这样的问题:客户端访问请求集群在少数的节点上,导致有些机器高负载,有些机器低负载的情况。那么有什么办法能让数据访问分布得比较均匀呢?答案就是虚拟节点。
在一致哈希算法中,如果节点太少,则很容易因为节点分布不均匀造成数据访问的冷热不均,也就是说,大多数访问请求都会集中少量几个节点上,如图所示。从图中可以看到,虽然集群有3个节点,但访问请求主要集中在节点A上。那么如何通过虚拟节点解决冷热不均的问题呢?
其实,可以对每一个服务器节点计算多个哈希值,在每个计算结果位置上都放置一个虚拟节点,并将虚拟节点映射到实际节点。比如,在主机名的后面增加比那好,分别计算Node-A-01、Node-A-02、Node-B-01、Node-B-02、Node-C-01、Node-C-02的哈希值,形成6个虚拟节点,如图所示,可以从图中看到,增加了节点后,节点在哈希环上的分布就相对均匀了,这时,如果有访问请求寻址到Node-A-01这个虚拟节点,将被重定位到节点A。你看这样我们就解决了冷热不均匀的问题。可能有人已经发现了,节点数越多,使用哈希算法时需要迁移的数据就越多,而使用一致哈希算法时需要迁移的数据就越少,如代码清单所示
go run ./hash.go -keys 10000000 -nodes 3 -new-nodes 4
74.999980%
go run ./hash.go -keys 10000000 -nodes 10 -new-nodes 11
90.909000%
go run ./consistent-hashgo.go -keys 10000000 -nodes 3 -new-nodes 4
24.301550%
go run ./consistent-hashgo.go -keys 10000000 -nodes 10 -new-nodes 11
6.479330%
从示例代码的输出中可以看到,当我们向10节点集群中增加节点时,如果使用哈希算法,则需要迁移高达90.91%的数据,如果使用一致哈希算法,则需要迁移6.48%的数据。
需要注意的是,使用一致哈希算法实现哈希寻址时,可以通过增加节点数来降低节点宕机对整个集群的影响,以及故障恢复时需要迁移的数据量。后续在需要时,你也可以通过增加节点数来提升系统的容灾能力和故障恢复效率。
Raft集群具有容错能力,能容忍少数的节点故障,那么在多个Raft集群组成的KV系统中,如何设计一致哈希算法,以实现当某个集群的领导者节点出现故障并选举出新的领导者后,整个系统还能稳定运行呢?
在多个Raft集群组成的KV系统中,设计一致哈希算法以实现领导者节点故障后系统的稳定运行,需要确保在领导者节点变更时,数据的一致性和服务的连续性。以下是一些建议的步骤和考虑因素:
有人可能会有这样的疑问:关于Raft算法的原理以及一致哈希算法如何突破集群"领导者"的限制,但是有的公司的配置中心、名字路由等使用的是ZooKeeper,那么ZAB协议是如何实现一致性的呢?ZAB协议和Raft算法又有什么不一样呢?
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。