赞
踩
第十一章 方差分析
为了使生产过程稳定,达到优质、高产,需要对影响产品质量的因素进行分析,找出有显著影响的那些因素,除了从机理方面进行研究外,常常要作许多试验,对结果作分析、比较,寻求规律。用数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作 ANOVA。
人们关心的试验结果称为 指标,试验中需要考察、可以控制的条件称为 因素或因子,因素所处的状态称为 水平。上面提到的灯泡寿命问题是单因素试验,小麦产量问题是双因素试验。处理这些试验结果的统计方法就称为单因素方差分析和双因素方差分析。
§1 单因素方差分析
只考虑一个因素 A 对所关心的指标的影响, A 取几个水平,在每个水平上作若干个试验,试验过程中除 A 外其它影响指标的因素都保持不变(只有随机因素存在),我们的任务是从试验结果推断,因素 A 对指标有无显著影响,即当 A 取不同水平时指标有无显著差别。
A 取某个水平下的指标视为随机变量,判断 A 取不同水平时指标有无显著差别,相当于检验若干总体的均值是否相等。
§2 双因素方差分析
如果要考虑两个因素 B A, 对指标的影响, B A, 各划分几个水平,对每一个水平组
合作若干次试验,对所得数据进行方差分析,检验两因素是否分别对指标有显著影响,
或者还要进一步检验两因素是否对指标有显著的交互影响。
§3 正交试验设计与方差分析
由于因素较少时,我们可以对不同因素的所有可能的水平组合做试验,这叫做全面试验。当因素较多时,虽然理论上仍可采用前面的方法进行全面试验后再做相应的方差分析,但是在实际中有时会遇到试验次数太多的问题。如果考虑更多的因素及水平,则全面试验的次数可能会大得惊人。因此在实际应用中,对于多因素做全面试验是不现实的。于是我们考虑是否可以选择其中一部分组合进行试验,这就要用到试验设计方法选择合理的试验方案,使得试验次数不多,但也能得到比较满意的结果。
第十二章 回归分析
曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。