赞
踩
原文:https://blog.iyatt.com/?p=13123
第一次玩 Stable Diffusion WebUI 是三十几天前,当时还在用四年半前(大学前暑假)买的轻薄本,而在半年前独显还坏了,所以是纯纯的用 CPU 折腾,刚开始纯 CPU 跑,后面发现 OpenVINO 有个 fork 版本支持 Intel 核显。一张 512x768 的图(不用高清放大),纯 CPU 能跑个 1 小时左右吧,核显能跑五六分钟。
虽然核显提速明显,但是整体速度也不是很快,这个还是其次的。主要是 OpenVINO 版不完善,而且我看 GitHub 的提交记录而稀少,更新不积极,应该不怎么重视吧(到目前为止显示最近的更新已经是两个月以上了)。其中的不完善体现在多个方面:①核显加速是通过脚本实现的,也就是使用了核显加速就不能使用其它自定义脚本了;②核显加速对内存依赖非常高,当时我为了尝试更大的图,把内存从 20G (4+16)改到 36G(4+32),然而我测试的极限大概也只能画到 750x1000 左右,再大就会报错说什么内存地址错误之类的,盯着任务管理器看就会发现在某个时候突然内存跑满,然后终端就出现报错,也就是说内存爆了;③核显加速支持范围太小,只能在文生图和图生图使用,且文生图中不能使用高清化,一旦开了就会变成 CPU 跑,然后第三方插件没发现有支持的,比如常用 ControlNet 等等。在一系列的原因之下,最后我放弃了。
前几天我买了台新的笔记本电脑,RTX4060 的显卡,24 号下午到了,先是测试了一番,又把系统换成专业版,接着装各种软件,晚上把 WebUI 配上了,当时试了一下,还是画 512x768 的图,仅仅几秒就画出来了,有了前面用 CPU 折腾的体验,这速度快得让人挺兴奋的。
配置 WebUI 其实挺简单的,电脑的显卡驱动保证安装好了,安装 Python 和 Git,再克隆 WebUI 的源码下来,运行里面的启动脚本,首次会自动创建一个 Python 虚拟环境,并在里面安装依赖的各种工具包,比如 PyTorch 之类的,安装完以后就会自动启动。稍微详细一点的流程可以看我前面的记录:https://blog.iyatt.com/?p=12345
2024.1.28
RAM:32G
CPU:i7-12700H
GPU:NVIDIA RTX4060 Laptop GPU
VRAM:8G
Windows 11 23H2
Stable Diffusion WebUI 1.7
插件可以直接在 WebUI 里添加,可能有些没有收录到里面就要自己去下载,以及有些插件依赖模型需要手动下载,可以前往插件的项目页看README,会给出模型下载链接,基本上都是在开源代码托管平台 GitHub 上。
GitHub:https://github.com/
注:
第一个插件支持中英同时显示,可以对照。第三个插件每过一段时间就会从云端同步,保持更新。
安装插件后进入设置,打开 User interface
在 Localization 里选择语言
然后保存设置并重启 UI 生效
控制网络,通过各种网络控制生成内容,比如骨骼可以控制生成人物姿势。
{Alt}
+{Q}
调出翻译框,自定义输入内容直接翻译Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。