赞
踩
1、入门人工智能是个宽泛的目标,因此还得 将目标拆分成阶段性目标才易于执行,可以对应到下面–学习路线及建议资源的各个节点。
2、学习人工智能这门学科,需要提醒的是这本来就是件难事,所以实在搞不懂的知识可以放在后面补下,不要奢求一步到位(当然天赋了得另说),不要想一下子成为专家,可以从:懂得调用现成的算法模块(scikit-learn、tensorflow)做项目 -进阶-》懂得算法原理进一步精用、调优算法 -进阶-》领域专家。保持学习,循序渐进才是啃硬骨头的姿势。
3、啃硬骨头过程无疑是艰难的,所以慢慢地培养兴趣和及时的结果反馈是很重要的。在这方面,边学边敲代码是必须的,结合代码实践学习效率会比较高,还可以及时看到学习成果,就算是啃硬骨头看到牙印越来越深,不也是成果,也比较不容易放弃!
本学习路线的基本的框架是:
→ 首先宽泛了解领域,建立一定兴趣
→ 基础知识、工具准备
→ 机器学习|深度学习的入门课程、书籍及项目实践
→ (面试准备)
→ 自行扩展:工作中实战学习 或 学术界特定领域钻研,经典算法原理、项目实践
我们首先要对人工智能领域有个宽泛的了解,有自己的全局性的认识,产生一些判断,才不会人云亦云地因为“薪资高、压力大”等去做出选择或者放弃。再者你做的准备调研越多,确认方向后越不容易放弃(等门槛效应)。当然,最重要还是慢慢培养兴趣,这个事情如果没有兴趣不走心,能做得很好吗?
人工智能(Artificial Intelligence,AI)之研究目的是通过探索智慧的实质,扩展人类智能——促使智能主体会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、专家系统等)、会学习(知识表示,机器学习等)、会行动(机器人、自动驾驶汽车等)。一个经典的AI定义是:“ 智能主体可以理解数据及从中学习,并利用知识实现特定目标和任务的能力。”
从技术层面来看(如下图),现在所说的人工智能技术基本上就是机器学习方面的(也就是,机器学习技术是我们入门AI的核心技术)。
AI除了机器学习,其他方面的如知识库、专家系统等技术较为没落。关于人工智能的发展历程,可以看看我之前一篇文章**人工智能简史**。
机器学习是指非显式的计算机程序可以从数据中学习,以此提高处理任务的水平。机器学习常见的任务有分类任务(如通过逻辑回归模型判断邮件是
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。