赞
踩
1)DF(DocumentFrequency) 文档频率
DF:统计特征词出现的文档数量,用来衡量某个特征词的重要性
2)MI(MutualInformation) 互信息法
互信息法用于衡量特征词与文档类别直接的信息量。
如果某个特征词的频率很低,那么互信息得分就会很大,因此互信息法倾向"低频"的特征词。相对的词频很高的词,得分就会变低,如果这词携带了很高的信息量,互信息法就会变得低效。
3)(Information Gain) 信息增益法
通过某个特征词的缺失与存在的两种情况下,语料中前后信息的增加,衡量某个特征词的重要性。
4)CHI(Chi-square) 卡方检验法
利用了统计学中的"假设检验"的基本思想:首先假设特征词与类别直接是不相关的
如果利用CHI分布计算出的检验值偏离阈值越大,那么更有信心否定原假设,接受原假设的备则假设:特征词与类别有着很高的关联度。
5)WLLR(Weighted LogLikelihood Ration)加权对数似然
6)WFO(WeightedFrequency and Odds)加权频率和可能性
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。