当前位置:   article > 正文

文本分类学习 (七)支持向量机SVM 的前奏 结构风险最小化和VC维度理论_svm中xi∈rn

svm中xi∈rn

前言:

经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的。于是开始逐一的去了解SVM的原理。

SVM 是在建立在结构风险最小化和VC维理论的基础上。所以这篇只介绍关于SVM的理论基础。

目录:

文本分类学习(一)开篇
文本分类学习(二)文本表示
文本分类学习(三)特征权重(TF/IDF)和特征提取   
文本分类学习(四)特征选择之卡方检验
文本分类学习(五)机器学习SVM的前奏-特征提取(卡方检验续集)
文本分类学习(六)AdaBoost和SVM(残)

1.泛化误差界

机器学习的能力和它的表现,有一个衡量的标准那就是统计学习中的泛化误差界。所谓泛化误差,就是指机器学习在除训练集之外的测试集上的预测误差。传统的机器学习追求在训练集上的预测误差最小化(经验风险,下面会具体说到),然后放到实际中去预测测试集的文本,却一败涂地。这就是泛化性能太差,而泛化误差界是指一个界限值,后面也会解释到。

机器学习实际是在预测一个模型以逼近真实的模型。这其中就必然存在与真实模型之间的误差(风险),这个风险当然是可以计算的。

假设我们有l个观察值,每个观察值由两个元素组成 一个属于Rn(n维空间)的向量:Xi ∈ Rn (i = 1 , 2 , 3 , 4…l) 已经和这个向量相对应的映射值 Yi 在二分类文本中 Xi就表示第i个文本的特征向量,前面介绍过,那么Yi = {+1,-1} 由两个类别组成。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/351945
推荐阅读
相关标签
  

闽ICP备14008679号