当前位置:   article > 正文

推荐算法——基于矩阵分解的推荐算法

基于矩阵分解的推荐算法

一、推荐算法概述

对于推荐系统(Recommend System, RS),从广义上的理解为:为用户(User)推荐相关的商品(Items)。常用的推荐算法主要有:

  • 基于内容的推荐(Content-Based Recommendation)
  • 协同过滤的推荐(Collaborative Filtering Recommendation)
  • 基于关联规则的推荐(Association Rule-Based Recommendation)
  • 基于效用的推荐(Utility-Based Recommendation)
  • 基于知识的推荐(Knowledge-Based Recommendation)
  • 组合推荐(Hybrid Recommendation)

在推荐系统中,最重要的数据是用户对商品的打分数据,数据形式如下所示:

这里写图片描述

其中,U1U5表示的是5个不同的用户,D1D4表示的是4个不同的商品,这样便构成了用户-商品矩阵,在该矩阵中,有用户对每一件商品的打分,其中“-”表示的是用户未对该商品进行打分。

在推荐系统中有一类问题是对未打分的商品进行评分的预测。

二、基于矩阵分解的推荐算法

2.1、矩阵分解的一般形式

矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品矩阵(评分矩阵),记为Rm×n。可以将其分解成两个或者多个矩阵的乘积,假设分解成两个矩阵Pm×kQk×n,我们要使得矩阵Pm×kQk×n的乘积能够还原原始的矩阵Rm×n

Rm×nPm×k×Qk×n=R^m×n

其中,矩阵Pm×k表示的是m个用户与k个主题之间的关系,而矩阵Qk×n表示的是k个主题与n个商品之间的关系。

2.2、利用矩阵分解进行预测

在上述的矩阵分解的过程中,将原始的评分矩阵Rm×n分解成两个矩阵Pm×kQk×n的乘积:

Rm×nPm×k×Qk×n=R^m×n

那么接下来的问题是如何求解矩阵Pm×kQk×n的每一个元素,可以将这个问题转化成机器学习中的回归问题进行求解。

2.2.1、损失函数

可以使用原始的评分矩阵Rm×n与重新构建的评分矩阵R^m×n之间的误差的平方作为损失函数,即:

ei,j2=(ri,jr^i,j)2=(ri,jk=1Kpi,kqk,j)2

最终,需要求解所有的非“-”项的损失之和的最小值:

minloss=ri,jei,j2

2.2.2、损失函数的求解

对于上述的平方损失函数,可以通过梯度下降法求解,梯度下降法的核心步骤是

  • 求解损失函数的负梯度:

pi,kei,j2=2(ri,jk=1Kpi,kqk,j)qk,j=2ei,jqk,j

qk,jei,j2=2(ri,jk=1Kpi,kqk,j)pi,k=2ei,jpi,k

  • 根据负梯度的方向更新变量:

pi,k=pi,kαpi,kei,j2=pi,k+2αei,jqk,j

qk,j=qk,jαqk,jei,j2=qk,j+2αei,jpi,k

通过迭代,直到算法最终收敛。

2.2.3、加入正则项的损失函数即求解方法

通常在求解的过程中,为了能够有较好的泛化能力,会在损失函数中加入正则项,以对参数进行约束,加入L2正则的损失函数为:

Ei,j2=(ri,jk=1Kpi,kqk,j)2+β2k=1K(pi,k2+qk,j2)

利用梯度下降法的求解过程为:

  • 求解损失函数的负梯度:

pi,kEi,j2=2(ri,jk=1Kpi,kqk,j)qk,j+βpi,k=2ei,jqk,j+βpi,k

qk,jEi,j2=2(ri,jk=1Kpi,kqk,j)pi,k+βqk,j=2ei,jpi,k+βqk,j

  • 根据负梯度的方向更新变量:

pi,k=pi,kα(pi,kei,j2+βpi,k)=pi,k+α(2ei,jqk,jβpi,k)

qk,j=qk,jα(qk,jei,j2+βqk,j)=qk,j+α(2ei,jpi,kβqk,j)

通过迭代,直到算法最终收敛。

2.2.4、预测

利用上述的过程,我们可以得到矩阵Pm×kQk×n,这样便可以为用户i对商品j进行打分:

k=1Kpi,kqk,j

2.3、程序实现

对于上述的评分矩阵,通过矩阵分解的方法对其未打分项进行预测,最终的结果为:

这里写图片描述

程序代码如下:

#!/bin/python
'''
Date:20160411
@author: zhaozhiyong
'''
from numpy import *

def load_data(path):
    f = open(path)
    data = []
    for line in f.readlines():
        arr = []
        lines = line.strip().split("\t")
        for x in lines:
            if x != "-":
                arr.append(float(x))
            else:
                arr.append(float(0))
        #print arr
        data.append(arr)
    #print data
    return data

def gradAscent(data, K):
    dataMat = mat(data)
    print dataMat
    m, n = shape(dataMat)
    p = mat(random.random((m, K)))
    q = mat(random.random((K, n)))

    alpha = 0.0002
    beta = 0.02
    maxCycles = 10000

    for step in xrange(maxCycles):
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    #print dataMat[i,j]
                    error = dataMat[i,j]
                    for k in xrange(K):
                        error = error - p[i,k]*q[k,j]
                    for k in xrange(K):
                        p[i,k] = p[i,k] + alpha * (2 * error * q[k,j] - beta * p[i,k])
                        q[k,j] = q[k,j] + alpha * (2 * error * p[i,k] - beta * q[k,j])

        loss = 0.0
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    error = 0.0
                    for k in xrange(K):
                        error = error + p[i,k]*q[k,j]
                    loss = (dataMat[i,j] - error) * (dataMat[i,j] - error)
                    for k in xrange(K):
                        loss = loss + beta * (p[i,k] * p[i,k] + q[k,j] * q[k,j]) / 2

        if loss < 0.001:
            break
        #print step
        if step % 1000 == 0:
            print loss

    return p, q


if __name__ == "__main__":
    dataMatrix = load_data("./data")

    p, q = gradAscent(dataMatrix, 5)
    '''
    p = mat(ones((4,10)))
    print p
    q = mat(ones((10,5)))
    '''
    result = p * q
    #print p
    #print q

    print result
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

其中,利用梯度下降法进行矩阵分解的过程中的收敛曲线如下所示:

这里写图片描述

'''
Date:20160411
@author: zhaozhiyong
'''

from pylab import *
from numpy import *

data = []

f = open("result")
for line in f.readlines():
    lines = line.strip()
    data.append(lines)

n = len(data)
x = range(n)
plot(x, data, color='r',linewidth=3)
plt.title('Convergence curve')
plt.xlabel('generation')
plt.ylabel('loss')
show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

参考文献

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/443291
推荐阅读
相关标签
  

闽ICP备14008679号