赞
踩
其实主要就是PROMPT微调,除了要设置prompt以外,还需要使用lora
DEVICE = 'cuda:3'
DATASET = 'eprstmt'
model_path = '../models/chatglm2/'
path_to_data = '/workspace/ChatGLM2_test/data/demo1'
import torch
from transformers import AutoModel,AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path,trust_remote_code=True).bfloat16().cuda(DEVICE)
# define a basic prompt for express comment
# prompt template with 4shots ahead
prompt = """文本分类任务:将一段用户给外卖服务的评论进行分类,分成好评或者差评。
下面是一些范例:
这个产品的质量真的很出色! -> 好评
使用起来非常流畅,没有任何问题。 -> 好评
它的功能非常强大,帮助我轻松完成任务。 -> 好评
超级友好和专业的客服团队。 -> 好评
物流速度快,让我很惊喜。 -> 好评
包装得很仔细,确保了商品的安全。 -> 好评
这个价格真是太划算了! -> 好评
购买后不久,产品就出现了严重的问题,无法正常使用。 -> 差评
当我试图联系客服解决问题时,根本无法得到任何帮助。 -> 差评
他们的营销策略是欺诈性的,不能信任。 -> 差评
尝试退货并获得退款变得非常繁琐和困难。 -> 差评
他们不愿意承认产品的问题,拒绝退款申请。 -> 差评
产品附带的保修几乎无法使用,因为服务中心离我太远。 -> 差评
即使在保修期内,他们也找各种理由拒绝提供服务。 -> 差评
请对下述评论进行分类。务必只使用'好评'或者'差评'回答,务必不做任何说明和解释。
xxxxxx ->
"""
# 这是一个替换 xxxxx的函数
def get_prompt(text):
return prompt.replace('xxxxxx',text)
# try for once and test model workable
response, his = model.chat(tokenizer, get_prompt('味道不错,下次还来'), history=[])
print(response)
print(his)
# 加入一些新的样本提示
his.append(("保修过程令人沮丧,几乎没有解决问题的帮助。 -> ","差评"))
his.append(("1这个产品简直就是一场灾难,存在严重的设计缺陷。 -> ","差评"))
his.append(("这款产品的性能超出了我的预期。 -> ","好评"))
his.append(("商品准时送达,包装完好无损。 -> ","差评"))
# 相当于使用prompt进行了9-shot提示
print(his)
from utils.read import *
train,dev,test,_ = readFile(path_to_data,DATASET,0)
print(train['text'][0],train['label'][0])
print('标签分布: ',Counter(train['label']))
# 处理标签
def label_handler(original_data):
for id,label in enumerate(original_data['label']):
if label == 0:
original_data['label'][id] = '差评'
else:
original_data['label'][id] = '好评'
return original_data
train = label_handler(train)
test = label_handler(test)
# print(train['label'])
# print(label_handler(train)['label'])
# model.build_inputs
def build_inputs(query, history):
prompt = ""
for i, (old_query, response) in enumerate(history):
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
prompt += "[Round {}]\n\n问:{} -> \n\n答:".format(len(history) + 1, query)
return prompt
print(build_inputs('性能不太行',history=his))
from datasets import Dataset
# 假设train['text']和train['label']是两个列表
trainData = {'text': train['text'], 'label': train['label']}
testData = {'text': test['text'] , 'label': test ['label']}
ds_train = Dataset.from_dict(trainData)
ds_val = Dataset.from_dict(testData)
from tqdm import tqdm
import transformers
max_seq_length = 128 # 短文本数据集就用少一点就可以
skip_over_length = True# 超过就不要了
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = transformers.AutoConfig.from_pretrained(model_path, trust_remote_code=True)
# 定义一个名为preprocess的函数,它接受一个example参数
def preprocess(example):
# 从example中获取"context"和"target"字段的内容
context = example["text"]
target = example["label"]
# 使用tokenizer.encode将context文本编码为token IDs
context_ids = tokenizer.encode(
context,
max_length=max_seq_length,
truncation=True)
# 使用tokenizer.encode将target文本编码为token IDs,同时不添加特殊token(如[CLS]和[SEP])
target_ids = tokenizer.encode(
target,
max_length=max_seq_length,
truncation=True,
add_special_tokens=False)
# 将context_ids、target_ids和eos_token_id(end-of-sequence token)连接起来,形成模型的输入
input_ids = context_ids + target_ids + [config.eos_token_id]
# 返回一个字典,包含以下三个键值对
return {"input_ids": input_ids, "context_len": len(context_ids), 'target_len': len(target_ids)}
# 使用preprocess函数对ds_train数据集进行映射操作,生成新的数据集ds_train_token
ds_train_token = ds_train.map(preprocess).select_columns(['input_ids', 'context_len','target_len'])
# 如果skip_over_length为True,过滤掉长度超过max_seq_length的样本
if skip_over_length:
ds_train_token = ds_train_token.filter(
lambda example: example["context_len"] < max_seq_length and example["target_len"] < max_seq_length)
ds_val_token = ds_val.map(preprocess).select_columns(['input_ids', 'context_len','target_len'])
# 如果skip_over_length为True,过滤掉长度超过max_seq_length的样本
if skip_over_length:
ds_val_token = ds_val_token.filter(
lambda example: example["context_len"] < max_seq_length and example["target_len"] < max_seq_length)
10.构建数据管道(只训练需要训练的部分,只训练回答的部分)
def data_collator(features: list):
len_ids = [len(feature["input_ids"]) for feature in features]
longest = max(len_ids) #之后按照batch中最长的input_ids进行padding
input_ids = []
labels_list = []
for length, feature in sorted(zip(len_ids, features), key=lambda x: -x[0]):
ids = feature["input_ids"]
context_len = feature["context_len"]
labels = (
[-100] * (context_len - 1) + ids[(context_len - 1) :] + [-100] * (longest - length)
) #-100标志位后面会在计算loss时会被忽略不贡献损失,我们集中优化target部分生成的loss
ids = ids + [tokenizer.pad_token_id] * (longest - length)
input_ids.append(torch.LongTensor(ids))
labels_list.append(torch.LongTensor(labels))
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids": input_ids,
"labels": labels,
}
from torch.utils.data import Dataset
dl_train = torch.utils.data.DataLoader(ds_train_token,num_workers=2,batch_size=4,
pin_memory=True,shuffle=True,
collate_fn = data_collator)
dl_val = torch.utils.data.DataLoader(ds_val_token,num_workers=2,batch_size=4,
pin_memory=True,shuffle=True,
collate_fn = data_collator)
# dl_train.size = 300 #每300个step视作一个epoch,做一次验证
preds = ['' for x in test['label']]
def predict(text):
response, history = model.chat(tokenizer, f"{text} -> ", history=his,
temperature=0.01)
return response
from tqdm import tqdm
for i in tqdm(range(len(test['label']))):
text = test['text'][i]
preds[i] = predict(text)
count = 0
for i,j in zip(preds,test['label']):
if i == j:
count+=1
print(count/len(test['label']))
import warnings
warnings.filterwarnings("ignore")
from transformers import AutoTokenizer, AutoModel, TrainingArguments, AutoConfig
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType
model.supports_gradient_checkpointing = True #节约cuda
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
#model.lm_head = CastOutputToFloat(model.lm_head)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False,
r=8,
lora_alpha=32, lora_dropout=0.1,
)
model = get_peft_model(model, peft_config)
model.is_parallelizable = True
model.model_parallel = True
model.print_trainable_parameters()
from torchkeras import KerasModel
from accelerate import Accelerator
class StepRunner:
def __init__(self, net, loss_fn, accelerator=None, stage = "train", metrics_dict = None,
optimizer = None, lr_scheduler = None
):
self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage
self.optimizer,self.lr_scheduler = optimizer,lr_scheduler
self.accelerator = accelerator if accelerator is not None else Accelerator()
if self.stage=='train':
self.net.train()
else:
self.net.eval()
def __call__(self, batch):
#loss
with self.accelerator.autocast():
loss = self.net(input_ids=batch["input_ids"],labels=batch["labels"]).loss
#backward()
if self.optimizer is not None and self.stage=="train":
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.net.parameters(), 1.0)
self.optimizer.step()
if self.lr_scheduler is not None:
self.lr_scheduler.step()
self.optimizer.zero_grad()
all_loss = self.accelerator.gather(loss).sum()
#losses (or plain metrics that can be averaged)
step_losses = {self.stage+"_loss":all_loss.item()}
#metrics (stateful metrics)
step_metrics = {}
if self.stage=="train":
if self.optimizer is not None:
step_metrics['lr'] = self.optimizer.state_dict()['param_groups'][0]['lr']
else:
step_metrics['lr'] = 0.0
return step_losses,step_metrics
KerasModel.StepRunner = StepRunner
#仅仅保存lora可训练参数
def save_ckpt(self, ckpt_path='checkpoint.pt', accelerator = None):
unwrap_net = accelerator.unwrap_model(self.net)
unwrap_net.save_pretrained(ckpt_path)
def load_ckpt(self, ckpt_path='checkpoint.pt'):
self.net = self.net.from_pretrained(self.net,ckpt_path)
self.from_scratch = False
KerasModel.save_ckpt = save_ckpt
KerasModel.load_ckpt = load_ckpt
keras_model = KerasModel(model,loss_fn = None,
optimizer=torch.optim.AdamW(model.parameters(),lr=2e-6))
ckpt_path = DATASET
keras_model.fit(train_data = dl_train,
val_data = dl_val,
epochs=300,patience=5,
monitor='val_loss',mode='min',
ckpt_path = ckpt_path,
#mixed_precision='fp16'
)
from peft import PeftModel
from transformers import AutoModel,AutoTokenizer
DEVICE = 'cuda:3'
DATASET = 'eprstmt'
model_path = '../models/chatglm2/'
path_to_data = '/workspace/ChatGLM2_test/data/demo1'
ckpt_path = DATASET
model = AutoModel.from_pretrained(model_path,
load_in_8bit=False,
trust_remote_code=True).cuda(DEVICE)
model = PeftModel.from_pretrained(model,ckpt_path)
model = model.merge_and_unload() #合并lora权重
def predict(text):
response, history = model.chat(tokenizer, f"{text} -> ", history=his,
temperature=0.01)
return response
predict('好用')
preds = ['' for x in test['label']]
from tqdm import tqdm
for i in tqdm(range(len(test['label']))):
text = test['text'][i]
preds[i] = predict(text)
Counter(preds)
count = 0
for i,j in zip(preds,test['label']):
if i == j:
count+=1
print(count/len(test['label']))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。