当前位置:   article > 正文

NLP中的Transformer 简介_transformer在nlp中的任务类型

transformer在nlp中的任务类型

作者|Renu Khandelwal 编译|VK 来源|Towards Data Science

在这篇文章中,我们将讨论以下有关Transformer的问题

  • 为什么我们需要Transformer,Sequence2Sequence模型的挑战是什么?
  • 详细介绍了Transformer及其架构
  • 深入研究Transformer中使用的术语,如位置编码、自注意力、多头注意力、掩码多头注意力
  • 可以使用Transformer的NLP任务

Sequence2Sequence (Seq2Seq)的缺点

  • 顺序计算:在Seq2Seq中,我们以顺序的方式在每个步骤中向编码器输入一个单词,以便在解码器中每次生成一个单词的输出。在Seq2Seq架构中我们做不到通过并行化操作来提高计算效率。

  • 长期依赖关系:长期依赖关系是Seq2Seq的一个问题,这是由于需要为长句执行大量操作造成的,如下所示。

这里的“it”指的是“Coronavirus”还是“countries”?。

让我们深入了解Transformer的体系结构和Transformer的关键概念,以了解Transformer如何应对这些挑战

Tr

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/643752
推荐阅读
相关标签
  

闽ICP备14008679号