赞
踩
存储在hive中的数据的信息:表名,表结构,属性,对应HDFS的目录
1、mysql(推荐)
2、derby(默认)
create table students
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’; // 必选,指定列分隔符
create table students2
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’
LOCATION ‘/input1’;
create table students3
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’
STORED AS rcfile; // 指定储存格式为rcfile,inputFormat:RCFileInputFormat,outputFormat:RCFileOutputFormat,如果不指定,默认为textfile,注意:除textfile以外,其他的存储格式的数据都不能直接加载,需要使用从表加载的方式。
hive shell命令行
// 清空表
truncate table students;
// 加上 local 关键字 可以将Linux本地目录下的文件 上传到 hive表对应HDFS 目录下 原文件不会被删除
load data local inpath ‘/usr/local/soft/data/students.txt’ into table students;
// overwrite 覆盖加载
load data local inpath ‘/usr/local/soft/data/students.txt’ overwrite into table students;
// 将HDFS上的/input1目录下面的数据 移动至 students表对应的HDFS目录下,注意是 移动、移动、移动
load data inpath ‘/input1/students.txt’ into table students;
// 比如下面这条语句会使用age作为分区字段,而不会使用student_dt中的dt作为分区字段
insert into table students_dt_p partition(dt) select id,name,age,gender,dt,age from students_dt;
多级分区
1、进行抽样
2、解决数据倾斜
3、map-side join
(1)获得更高的查询处理效率。分桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
行转列 lateral view explode
select name,col1,col2 from testarray2 lateral view explode(map(‘key1’,1,‘key2’,2,‘key3’,3)) t1 as col1,col2;
在最后加上 lateral view explode
map:一个一个处理
explode:展开
lateral view:侧视图,临时表的感觉
t1 :给侧视图取别名
col1,col2 :展开的俩个列名,在select中使用
列转行 collect_list
collect_set(col) --将某字段的值进行去重汇总
条件函数
日期函数
字符串函数
concat
concat_ws
substring
split
explode
设置分区分桶
拆分表
当你需要对一个很大的表做分析的时候,但不是每个字段都需要用到,可以考虑拆分表,生成子表,减少输入的数据量。并且过滤掉无效的数据,或者合并数据,进一步减少分析的数据量
选择适当的文件压缩格式
调整mapper和reducer数量
如果小文件过多,map执行前合并小文件
Reduce个数并不是越多越好
(1)过多的启动和初始化Reduce也会消耗时间和资源;
(2)另外,有多少个Reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
在设置Reduce个数的时候也需要考虑这两个原则:处理大数据量利用合适的Reduce数;使单个Reduce任务处理数据量大小要合适;
并行执行
Hive会将一个查询转化成一个或者多个阶段。这样的阶段可以是MapReduce阶段、抽样阶段、合并阶段、limit阶段。或者Hive执行过程中可能需要的其他阶段。默认情况下,Hive一次只会执行一个阶段。不过,某个特定的job可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个job的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么job可能就越快完成。
通过设置参数hive.exec.parallel值为true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果job中并行阶段增多,那么集群利用率就会增加。
Fetch抓取
Hive中对某些情况的查询可以不必使用MapReduce计算。例如:SELECT * FROM employees;在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台。
本地模式
大多数的Hadoop Job是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。
用户可以通过设置hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化。
严格模式
对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行。换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常大的数据集,而且数据增加迅速。没有进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。
对于使用了order by语句的查询,要求必须使用limit语句。因为order by为了执行排序过程会将所有的结果数据分发到同一个Reducer中进行处理,强制要求用户增加这个LIMIT语句可以防止Reducer额外执行很长一段时间。
限制笛卡尔积的查询。对关系型数据库非常了解的用户可能期望在执行JOIN查询的时候不使用ON语句而是使用where语句,这样关系数据库的执行优化器就可以高效地将WHERE语句转化成那个ON语句。不幸的是,Hive并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情况。
JVM重用
JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。
Hadoop的默认配置通常是使用派生JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。JVM重用可以使得JVM实例在同一个job中重新使用N次。N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间,具体多少需要根据具体业务场景测试得出。
这个功能的缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job中有某几个reduce task执行的时间要比其他Reduce task消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。
推测执行
在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果
压缩
设置map端输出,中间过程压缩。(减少IO流和网络传输,提高效率)
如果大key是无意义的脏数据,直接过滤掉。如null值等
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。