赞
踩
这部分太简单,直接略过
独立事件A和B的交集如下
非独立事件A和B的交集如下
在概率论和统计学中,先验概率和后验概率是贝叶斯统计的核心概念
简单来说后验概率就是结合了先验概率的前提和新事件的信息
自然贝叶斯就是在有多个先验的前提下,假设它们相互独立,利用公式算出来的近似概率
条件概率生成像素
条件概率识别图像
随机变量分为离散型随机变量和连续型随机变量
区别如下
适用离散型随机变量
适用连续性随机变量
纵坐标都是概率密度函数,面积才是概率,且总面积为1
伯努利分布和二项分布的区别在于二项分布中事件发生的概率带有二项式系数
概率密度函数在一个范围[a,b]为定值
μ和σ的几何意义:μ是对称中心,σ是标准差,直接决定曲线的高度和形状
箱线图也称箱须图、箱形图、盒图,用于反映数据的离散程度,倾斜程度
主要由Q1,Q2,Q3百分位数组成,
分位数-分位数图是通过比较两个概率分布的分位数对这两个概率分布进行比较的概率图方法
横坐标是理论正态概率分布的百分数,纵坐标是数据概率分布的百分数
具体定义如下
将高维度密度分布降低至低纬度密度分布
体现在联合分布的散点图上
两个随机变量的条件分布
几何意义:横截面只是上式的分母
对于数据集来收,概率分布为恒定值;对于随机变量来说,公式要变成加权的形式
协方差为正或负说明数据集之间有正相关或负相关的关系,接近0说明数据集几乎没有关系
对角线上都是变量的方差,其他都是两个变量之间的协方差
就是把协方差标准化的结果
这种结果更接近总体真实的方差
大数定律揭示了随着样本量 声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。