当前位置:   article > 正文

opencv实战 -- 车牌识别_基于opencv的车牌识别源码.zip

基于opencv的车牌识别源码.zip

车牌提取

任务:

  • 将车牌中图片中提取出来
# 导入所需模块
import cv2
from matplotlib import pyplot as plt

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
# 加载图片
rawImage = cv2.imread("./image/test4.png")
plt_show0(rawImage)
  • 1
  • 2
  • 3

在这里插入图片描述

# 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)
# 预览效果
plt_show0(image)
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3

在这里插入图片描述

# sobel算子边缘检测(做了一个y方向的检测)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
# Sobel_y = cv2.Sobel(image, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8
# absY = cv2.convertScaleAbs(Sobel_y)
# dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
image = absX
plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

# 自适应阈值处理
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 5))
print(kernelX)
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 3)
plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))

# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)

plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
plt_show0(image1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

len(contours)
# 11
  • 1
  • 2
# 筛选出车牌位置的轮廓
# 这里我只做了一个车牌的长宽比在3:1到4:1之间这样一个判断
for item in contours:
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 440mm×140mm
    if (weight > (height * 2.5)) and (weight < (height * 4)):
        image = rawImage[y:y + height, x:x + weight]
#         cv_show('image',image)
        # 图像保存
        plt_show0(image)
        cv2.imwrite('./car_license/test4.png', image)
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

在这里插入图片描述

车牌处理提取各字符

# 导入所需模块
import cv2
from matplotlib import pyplot as plt

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
# 加载图片
rawImage = cv2.imread("./car_license/test4.png")
plt_show0(rawImage)
  • 1
  • 2
  • 3

在这里插入图片描述

# 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)
# 预览效果
plt_show0(image)
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 自适应阈值处理
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 计算二值图像黑白点的个数,处理绿牌照问题,让车牌号码始终为白色
area_white = 0
area_black = 0
height, width = image.shape
print(image.shape)
# (33, 98)
for i in range(height):
    for j in range(width):
        if image[i, j] == 255:
            area_white += 1
        else:
            area_black += 1
if area_white>area_black:
    ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
    plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

在这里插入图片描述

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
# kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 1))
# kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 5))
# image = cv2.erode(image, kernelX)
# image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernel)
plt_show(image)
# 闭运算,是白色部分练成整体
# kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# print(kernelX)
# image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 2)
# plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 0, 255), 1)
plt_show0(image1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

# 筛选出各个字符的位置的轮廓
words = []
for item in contours:
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    word = []
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    word.append(x)
    word.append(y)
    word.append(weight)
    word.append(height)
    words.append(word)
    
words = sorted(words,key=lambda s:s[0],reverse=False)
    
print(words)
# [[3, 0, 63, 29], [5, 9, 11, 20], [22, 30, 16, 3], [29, 17, 4, 3], [33, 8, 12, 21], [46, 8, 11, 21], [56, 4, 29, 29], [58, 8, 11, 21], [82, 10, 11, 19], [90, 5, 6, 5]]

i = 0
for word in words:
    if (word[3] > (word[2] * 1.8)) and (word[3] < (word[2] * 3.5)):
        i = i+1
        image = rawImage[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
        plt_show0(image)
        cv2.imwrite('./words/test2_'+str(i)+'.png', image)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模板匹配

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
    
    
template = ['0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
            '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
            '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
template[33]
# 'Z'
  • 1
  • 2
# 读取一个文件夹下的所有图片,输入参数是文件名
def read_directory(directory_name):
    referImg_list = []
    for filename in os.listdir(directory_name):
        # print(filename)  # 仅仅是为了测试
        # img = cv2.imread(directory_name + "/" + filename)
        referImg_list.append(directory_name + "/" + filename)

    return referImg_list
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
'
运行
# 匹配中文
c_words = []
for i in range(34,64):
    c_word = read_directory('./refer1/'+ template[i])
    c_words.append(c_word)
c_words[1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
['./refer1/川/川_0.jpg',
 './refer1/川/川_1.jpg',
 './refer1/川/川_10.jpg',
 './refer1/川/川_100.jpg',
 './refer1/川/川_101.jpg',
 './refer1/川/川_102.jpg',
 './refer1/川/川_103.jpg',
 './refer1/川/川_104.jpg',
 './refer1/川/川_105.jpg',
 './refer1/川/川_106.jpg',
 './refer1/川/川_107.jpg',
 './refer1/川/川_108.jpg',
 './refer1/川/川_109.jpg',
 './refer1/川/川_11.jpg',
 './refer1/川/川_110.jpg',
 './refer1/川/川_111.jpg',
 './refer1/川/川_112.jpg',
 './refer1/川/川_113.jpg',
 './refer1/川/川_114.jpg',
 './refer1/川/川_115.jpg',
 './refer1/川/川_116.jpg',
 './refer1/川/川_117.jpg',
 './refer1/川/川_118.jpg',
 './refer1/川/川_119.jpg',
 './refer1/川/川_12.jpg',
 './refer1/川/川_120.jpg',
 './refer1/川/川_121.jpg',
 './refer1/川/川_122.jpg',
 './refer1/川/川_123.jpg',
 './refer1/川/川_124.jpg',
 './refer1/川/川_125.jpg',
 './refer1/川/川_126.jpg',
 './refer1/川/川_127.jpg',
 './refer1/川/川_128.jpg',
 './refer1/川/川_129.jpg',
 './refer1/川/川_13.jpg',
 './refer1/川/川_130.jpg',
 './refer1/川/川_131.jpg',
 './refer1/川/川_132.jpg',
 './refer1/川/川_133.jpg',
 './refer1/川/川_134.jpg',
 './refer1/川/川_135.jpg',
 './refer1/川/川_136.jpg',
 './refer1/川/川_137.jpg',
 './refer1/川/川_138.jpg',
 './refer1/川/川_139.jpg',
 './refer1/川/川_14.jpg',
 './refer1/川/川_140.jpg',
 './refer1/川/川_141.jpg',
 './refer1/川/川_142.jpg',
 './refer1/川/川_143.jpg',
 './refer1/川/川_144.jpg',
 './refer1/川/川_145.jpg',
 './refer1/川/川_146.jpg',
 './refer1/川/川_147.jpg',
 './refer1/川/川_148.jpg',
 './refer1/川/川_149.jpg',
 './refer1/川/川_15.jpg',
 './refer1/川/川_150.jpg',
 './refer1/川/川_151.jpg',
 './refer1/川/川_152.jpg',
 './refer1/川/川_153.jpg',
 './refer1/川/川_154.jpg',
 './refer1/川/川_155.jpg',
 './refer1/川/川_156.jpg',
 './refer1/川/川_157.jpg',
 './refer1/川/川_158.jpg',
 './refer1/川/川_159.jpg',
 './refer1/川/川_16.jpg',
 './refer1/川/川_160.jpg',
 './refer1/川/川_161.jpg',
 './refer1/川/川_162.jpg',
 './refer1/川/川_163.jpg',
 './refer1/川/川_164.jpg',
 './refer1/川/川_165.jpg',
 './refer1/川/川_166.jpg',
 './refer1/川/川_167.jpg',
 './refer1/川/川_168.jpg',
 './refer1/川/川_169.jpg',
 './refer1/川/川_17.jpg',
 './refer1/川/川_170.jpg',
 './refer1/川/川_171.jpg',
 './refer1/川/川_172.jpg',
 './refer1/川/川_173.jpg',
 './refer1/川/川_174.jpg',
 './refer1/川/川_175.jpg',
 './refer1/川/川_176.jpg',
 './refer1/川/川_177.jpg',
 './refer1/川/川_178.jpg',
 './refer1/川/川_179.jpg',
 './refer1/川/川_18.jpg',
 './refer1/川/川_180.jpg',
 './refer1/川/川_181.jpg',
 './refer1/川/川_182.jpg',
 './refer1/川/川_183.jpg',
 './refer1/川/川_19.jpg',
 './refer1/川/川_2.jpg',
 './refer1/川/川_20.jpg',
 './refer1/川/川_21.jpg',
 './refer1/川/川_22.jpg',
 './refer1/川/川_23.jpg',
 './refer1/川/川_24.jpg',
 './refer1/川/川_25.jpg',
 './refer1/川/川_26.jpg',
 './refer1/川/川_27.jpg',
 './refer1/川/川_28.jpg',
 './refer1/川/川_29.jpg',
 './refer1/川/川_3.jpg',
 './refer1/川/川_30.jpg',
 './refer1/川/川_31.jpg',
 './refer1/川/川_32.jpg',
 './refer1/川/川_33.jpg',
 './refer1/川/川_34.jpg',
 './refer1/川/川_35.jpg',
 './refer1/川/川_36.jpg',
 './refer1/川/川_37.jpg',
 './refer1/川/川_38.jpg',
 './refer1/川/川_39.jpg',
 './refer1/川/川_4.jpg',
 './refer1/川/川_40.jpg',
 './refer1/川/川_41.jpg',
 './refer1/川/川_42.jpg',
 './refer1/川/川_43.jpg',
 './refer1/川/川_44.jpg',
 './refer1/川/川_45.jpg',
 './refer1/川/川_46.jpg',
 './refer1/川/川_47.jpg',
 './refer1/川/川_48.jpg',
 './refer1/川/川_49.jpg',
 './refer1/川/川_5.jpg',
 './refer1/川/川_50.jpg',
 './refer1/川/川_51.jpg',
 './refer1/川/川_52.jpg',
 './refer1/川/川_53.jpg',
 './refer1/川/川_54.jpg',
 './refer1/川/川_55.jpg',
 './refer1/川/川_56.jpg',
 './refer1/川/川_57.jpg',
 './refer1/川/川_58.jpg',
 './refer1/川/川_59.jpg',
 './refer1/川/川_6.jpg',
 './refer1/川/川_60.jpg',
 './refer1/川/川_61.jpg',
 './refer1/川/川_62.jpg',
 './refer1/川/川_63.jpg',
 './refer1/川/川_64.jpg',
 './refer1/川/川_65.jpg',
 './refer1/川/川_66.jpg',
 './refer1/川/川_67.jpg',
 './refer1/川/川_68.jpg',
 './refer1/川/川_69.jpg',
 './refer1/川/川_7.jpg',
 './refer1/川/川_70.jpg',
 './refer1/川/川_71.jpg',
 './refer1/川/川_72.jpg',
 './refer1/川/川_73.jpg',
 './refer1/川/川_74.jpg',
 './refer1/川/川_75.jpg',
 './refer1/川/川_76.jpg',
 './refer1/川/川_77.jpg',
 './refer1/川/川_78.jpg',
 './refer1/川/川_79.jpg',
 './refer1/川/川_8.jpg',
 './refer1/川/川_80.jpg',
 './refer1/川/川_81.jpg',
 './refer1/川/川_82.jpg',
 './refer1/川/川_83.jpg',
 './refer1/川/川_84.jpg',
 './refer1/川/川_85.jpg',
 './refer1/川/川_86.jpg',
 './refer1/川/川_87.jpg',
 './refer1/川/川_88.jpg',
 './refer1/川/川_89.jpg',
 './refer1/川/川_9.jpg',
 './refer1/川/川_90.jpg',
 './refer1/川/川_91.jpg',
 './refer1/川/川_92.jpg',
 './refer1/川/川_93.jpg',
 './refer1/川/川_94.jpg',
 './refer1/川/川_95.jpg',
 './refer1/川/川_96.jpg',
 './refer1/川/川_97.jpg',
 './refer1/川/川_98.jpg',
 './refer1/川/川_99.jpg']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
# # 读取模板图片,用来读取文件夹中的所有模板图片,输入参数是文件名
# def read_directory(directory_name):
#     referImg_list = []
#     for filename in os.listdir(directory_name):
#         # print(filename)  # 仅仅是为了测试
#         # img = cv2.imread(directory_name + "/" + filename)
#         referImg_list.append(directory_name + "/" + filename)

#     return referImg_list

# referImg_list = read_directory('./refer')

# # 测试所用,查看模板长什么样
# # for i in referImg_list:
# #     template = cv2.imread(i)
# #     template = cv2.GaussianBlur(template, (3, 3), 0)
# #     # 灰度处理
# #     template = cv2.cvtColor(template, cv2.COLOR_RGB2GRAY)
# #     # 自适应阈值处理
# #     ret, template = cv2.threshold(template, 0, 255, cv2.THRESH_OTSU)
# #     plt_show(template)
# referImg_list
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
'
运行

识别车牌第一个中文

# 读取一个车牌字符
img = cv2.imread('./words/test4_1.png')
plt_show0(img)
  • 1
  • 2
  • 3

在这里插入图片描述

# 灰度处理,二值化
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

# 计算二值图像黑白点的个数,处理绿牌照问题,让车牌号码始终为白色
# area_white = 0
# area_black = 0
# height, width = gray_image.shape
# print(gray_image.shape)
# for i in range(height):
#     for j in range(width):
#         if gray_image[i, j] == 255:
#             area_white += 1
#         else:
#             area_black += 1
# if area_white<area_black:
#     ret, gray_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
# plt_show(gray_image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
'
运行
# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image_)
  • 1
  • 2
  • 3

在这里插入图片描述

import numpy as np
best_score = []
for c_word in c_words:
    score = []
    for word in c_word:
#         print(word)
        # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
        template_img=cv2.imdecode(np.fromfile(word,dtype=np.uint8),1)
#         template_img = cv2.imread(word)
#         print(template_img)
#         cv_show('template_img',template_img)
#         template_img = np.float32(template_img)
#         plt_show0(template_img)
#         print(word)
        template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
        ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
        
        height, width = template_img.shape
        image = image_.copy()
        image = cv2.resize(image, (width, height))
        result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
        score.append(result[0][0])
    best_score.append(max(score))

print(best_score)
# [-459146.12, 1258738.6, 301110.5, 1197172.0, 187095.4, -263099.44, 624999.9, 74035.15, 52876.164, -289379.1, 24036.938, 335899.5, 806250.56, 763998.5, 186862.45, -603025.94, -263213.06, 1445831.5, 323525.0, 558358.44, 388600.25, -93354.36, -11898.9375, 190925.52, -6728.175, -301921.66, 31243.1, -51356.363, 535923.7, 41800.24]
print(max(best_score))
# 1445831.5
print(best_score.index(max(best_score)))
# 17
print(template[34])
# 藏
print(template[34+27])
# 豫
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
score = []
best_template = None
best_refer = None
for refer in referImg_list:
#     refer = refer[0]
#     print(refer)
    template = cv2.imread(refer)
    
    template = cv2.GaussianBlur(template, (3, 3), 0)
    # 灰度处理
    template = cv2.cvtColor(template, cv2.COLOR_RGB2GRAY)
    # 自适应阈值处理
    ret, template = cv2.threshold(template, 0, 255, cv2.THRESH_OTSU)
    
    height, width = template.shape
    image = image_.copy()
    image = cv2.resize(image, (width, height))  # 和模板一致
#     plt_show(image)
    # TM_SQDIFF TM_CCOEFF
     # TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
            # TM_CCORR:计算相关性,计算出来的值越大,越相关
            # TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
            # TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
            # TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
            # TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
    result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF)
#     print(score)
    if score!=[] and result[0][0]>max(score):
        best_template = None
        best_refer = None
        best_template = template
        best_refer = refer
    score.append(result[0][0])

print(score)
plt_show(best_template)
print(max(score))
print(best_refer)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

识别车牌第二字字母

# 读取一个车牌字符
img = cv2.imread('./words/test1_5.png')
plt_show0(img)
  • 1
  • 2
  • 3
# 灰度处理,二值化
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image_)
  • 1
  • 2
  • 3

在这里插入图片描述

# 字母模板列表
c_words = []
for i in range(10,34):
    c_word = read_directory('./refer1/'+ template[i])
    c_words.append(c_word)
c_words
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
[['./refer1/A/1.jpg',
  './refer1/A/1_0.856030_gray_320_138_step5_recog_6_A_0.978489_0.837615.jpg',
  './refer1/A/2.jpg',
  './refer1/A/2_0.846378_gray_2159_689_step5_recog_3_A_0.971941_0.822629.jpg',
  './refer1/A/3.jpg',
  './refer1/A/3_0.856547_gray_12130_4762_step5_recog_3_A_0.977920_0.837634.jpg',
  './refer1/A/4_0.933938_gray_167_102_step5_recog_2_A_0.993055_0.927452.jpg',
  './refer1/A/5.jpg',
  './refer1/A/5_0.901183_gray_3816_1690_step5_recog_2_A_0.985670_0.888269.jpg',
  './refer1/A/6.jpg',
  './refer1/A/6_0.975988_gray_26367_10980_step5_recog_2_A_0.997399_0.973450.jpg',
  './refer1/A/7.jpg'],
 ['./refer1/B/100.jpg',
  './refer1/B/10_0.971281_gray_14714_6586_step5_recog_6_B_0.997299_0.968658.jpg',
  './refer1/B/11_0.846192_gray_3098_1355_step5_recog_3_B_0.968839_0.819825.jpg',
  './refer1/B/12_0.861143_gray_8251_3578_step5_recog_1_B_0.966128_0.831974.jpg',
  './refer1/B/13_0.912380_gray_19070_7547_step5_recog_3_B_0.985171_0.898850.jpg',
  './refer1/B/14_0.911616_gray_34977_14878_step5_recog_4_B_0.937879_0.854986.jpg',
  './refer1/B/15_0.918012_gray_31254_13163_step5_recog_6_B_0.981586_0.901107.jpg',
  './refer1/B/16_0.858933_gray_803_394_step5_recog_6_B_0.981681_0.843198.jpg',
  './refer1/B/17_0.879720_gray_16549_6687_step5_recog_1_B_0.961831_0.846143.jpg',
  './refer1/B/18_0.957651_gray_2255_1550_step5_recog_2_B_0.992747_0.950705.jpg',
  './refer1/B/19_0.884420_gray_454_271_step5_recog_2_B_0.971990_0.859647.jpg',
  './refer1/B/1_0.740098_gray_7076_3219_step5_recog_6_B_0.951542_0.704234.jpg',
  './refer1/B/20171103094027_4.jpg',
  './refer1/B/20171103102419_1_88.jpg',
  './refer1/B/20171103102426_3_308.jpg',
  './refer1/B/20171103102427_2_346.jpg',
  './refer1/B/20171103102434_0_576.jpg',
  './refer1/B/20171103102434_1_567.jpg',
  './refer1/B/20171103102434_1_580.jpg',
  './refer1/B/20171103102436_3_623.jpg',
  './refer1/B/20171103102436_4_638.jpg',
  './refer1/B/20171103102436_6_632.jpg',
  './refer1/B/20171103102437_2_653.jpg',
  './refer1/B/20171103102437_3_670.jpg',
  './refer1/B/20171103102437_3_676.jpg',
  './refer1/B/20171103102437_5_664.jpg',
  './refer1/B/20171103102438_6_688.jpg',
  './refer1/B/20171103102440_1_772.jpg',
  './refer1/B/20171103102440_2_765.jpg',
  './refer1/B/20171103102440_4_784.jpg',
  './refer1/B/20171103102441_1_795.jpg',
  './refer1/B/20171103102441_1_818.jpg',
  './refer1/B/20171103102441_2_811.jpg',
  './refer1/B/20171103102441_3_804.jpg',
  './refer1/B/20171103102442_2_830.jpg',
  './refer1/B/20171103102442_5_845.jpg',
  './refer1/B/20171103102443_0_871.jpg',
  './refer1/B/20171103102443_3_857.jpg',
  './refer1/B/20171103102443_3_865.jpg',
  './refer1/B/20171103102443_3_882.jpg',
  './refer1/B/20171103102444_2_907.jpg',
  './refer1/B/20171103102444_3_899.jpg',
  './refer1/B/20171103102444_4_892.jpg',
  './refer1/B/20171103102444_4_913.jpg',
  './refer1/B/20171103102445_2_945.jpg',
  './refer1/B/20171103102445_3_938.jpg',
  './refer1/B/20171103102445_3_954.jpg',
  './refer1/B/20171103102445_4_920.jpg',
  './refer1/B/20171103102445_6_933.jpg',
  './refer1/B/20171103102446_3_958.jpg',
  './refer1/B/20171103102446_3_978.jpg',
  './refer1/B/20171103102447_4_1003.jpg',
  './refer1/B/20171103102448_2_1054.jpg',
  './refer1/B/20171103102448_3_1055.jpg',
  './refer1/B/20171103102452_2_1179.jpg',
  './refer1/B/20171103102455_1_1267.jpg',
  './refer1/B/20171103102508_7_1716.jpg',
  './refer1/B/20171103102514_5_1915.jpg',
  './refer1/B/20171103102516_1_1988.jpg',
  './refer1/B/20171103102516_1_1994.jpg',
  './refer1/B/20171103102517_2_2002.jpg',
  './refer1/B/20171103102517_6_2011.jpg',
  './refer1/B/20171103102519_6_2091.jpg',
  './refer1/B/20171103102520_3_2114.jpg',
  './refer1/B/20171103102520_4_2096.jpg',
  './refer1/B/20171103102522_0_2186.jpg',
  './refer1/B/20171103102522_1_2167.jpg',
  './refer1/B/20171103102522_2_2174.jpg',
  './refer1/B/20171103102522_5_2184.jpg',
  './refer1/B/20171103102524_3_2262.jpg',
  './refer1/B/20171103102526_4_2299.jpg',
  './refer1/B/20171103102530_3_2444.jpg',
  './refer1/B/20171103102533_1_2545.jpg',
  './refer1/B/20171103102533_1_2550.jpg',
  './refer1/B/20171103102533_4_2542.jpg',
  './refer1/B/20171103102537_3_2673.jpg',
  './refer1/B/20171103102537_4_2674.jpg',
  './refer1/B/20171103102538_6_2722.jpg',
  './refer1/B/20171103102539_2_2751.jpg',
  './refer1/B/20171103102540_2_2772.jpg',
  './refer1/B/20171103102540_2_2777.jpg',
  './refer1/B/20171103102540_4_2785.jpg',
  './refer1/B/20171103102548_3_3039.jpg',
  './refer1/B/20171103102556_2_3334.jpg',
  './refer1/B/20171103102558_0_3385.jpg',
  './refer1/B/20171103102600_3_3468.jpg',
  './refer1/B/20171103102602_2_3507.jpg',
  './refer1/B/20171103102604_2_3578.jpg',
  './refer1/B/20171103102606_2_3644.jpg',
  './refer1/B/20171103102609_2_3744.jpg',
  './refer1/B/20171103102613_3_3866.jpg',
  './refer1/B/20171103102614_1_3917.jpg',
  './refer1/B/20171103102620_2_4121.jpg',
  './refer1/B/20171103102628_2_4381.jpg',
  './refer1/B/20171103102638_0_4705.jpg',
  './refer1/B/20171103102643_2_4893.jpg',
  './refer1/B/20171103102645_2_4944.jpg',
  './refer1/B/20171103102647_1_5026.jpg',
  './refer1/B/20171103102648_4_5035.jpg',
  './refer1/B/20171103102650_3_5114.jpg',
  './refer1/B/20171103102651_4_5149.jpg',
  './refer1/B/20171103102653_3_5203.jpg',
  './refer1/B/20171103102653_3_5224.jpg',
  './refer1/B/20171103102655_0_5274.jpg',
  './refer1/B/20171103102700_5_5463.jpg',
  './refer1/B/20171103102701_2_5473.jpg',
  './refer1/B/20171103102701_2_5479.jpg',
  './refer1/B/20171103102701_4_5468.jpg',
  './refer1/B/20171103102701_4_5485.jpg',
  './refer1/B/20171103102702_1_5524.jpg',
  './refer1/B/20171103102702_4_5506.jpg',
  './refer1/B/20171103102702_4_5513.jpg',
  './refer1/B/20171103102702_4_5519.jpg',
  './refer1/B/20171103102702_4_5527.jpg',
  './refer1/B/20171103102703_4_5536.jpg',
  './refer1/B/20171103102703_4_5551.jpg',
  './refer1/B/20171103102703_5_5545.jpg',
  './refer1/B/20171103102704_1_5573.jpg',
  './refer1/B/20171103102705_1_5629.jpg',
  './refer1/B/20171103102707_0_5683.jpg',
  './refer1/B/20171103102707_6_5689.jpg',
  './refer1/B/20171103102712_2_5852.jpg',
  './refer1/B/20171103102717_1_5993.jpg',
  './refer1/B/20171103102718_1_6032.jpg',
  './refer1/B/20171103102734_1_6458.jpg',
  './refer1/B/20171103102746_2_6770.jpg',
  './refer1/B/20171103102748_5_6805.jpg',
  './refer1/B/20171103102757_2_7040.jpg',
  './refer1/B/20171103102804_0_7208.jpg',
  './refer1/B/20171103102804_2_7225.jpg',
  './refer1/B/20171103102805_1_7231.jpg',
  './refer1/B/20171103102806_0_7286.jpg',
  './refer1/B/20171103102809_2_7354.jpg',
  './refer1/B/20171103102809_2_7360.jpg',
  './refer1/B/20171103102812_2_7432.jpg',
  './refer1/B/20171103102815_2_7490.jpg',
  './refer1/B/20171103102817_5_7556.jpg',
  './refer1/B/20171103102823_0_7688.jpg',
  './refer1/B/20171103102823_1_7713.jpg',
  './refer1/B/20171103102823_3_7698.jpg',
  './refer1/B/20171103102823_4_7703.jpg',
  './refer1/B/20171103102823_4_7710.jpg',
  './refer1/B/20171103102824_1_7721.jpg',
  './refer1/B/20171103102824_5_7725.jpg',
  './refer1/B/20171103102824_5_7732.jpg',
  './refer1/B/20171103102825_1_7748.jpg',
  './refer1/B/20171103102825_2_7749.jpg',
  './refer1/B/20171103102825_3_7757.jpg',
  './refer1/B/20171103102825_4_7758.jpg',
  './refer1/B/20171103102825_5_7766.jpg',
  './refer1/B/20171103102826_0_7769.jpg',
  './refer1/B/20171103102826_1_7795.jpg',
  './refer1/B/20171103102826_5_7787.jpg',
  './refer1/B/20171103102827_1_7803.jpg',
  './refer1/B/20171103102827_1_7818.jpg',
  './refer1/B/20171103102827_4_7816.jpg',
  './refer1/B/20171103102827_6_7830.jpg',
  './refer1/B/20171103102828_0_7837.jpg',
  './refer1/B/20171103102828_1_7854.jpg',
  './refer1/B/20171103102828_1_7862.jpg',
  './refer1/B/20171103102828_4_7835.jpg',
  './refer1/B/20171103102828_5_7851.jpg',
  './refer1/B/20171103102829_1_7891.jpg',
  './refer1/B/20171103102829_4_7888.jpg',
  './refer1/B/20171103102829_5_7876.jpg',
  './refer1/B/20171103102829_5_7883.jpg',
  './refer1/B/20171103102830_0_7905.jpg',
  './refer1/B/20171103102830_1_7927.jpg',
  './refer1/B/20171103102830_5_7902.jpg',
  './refer1/B/20171103102830_5_7924.jpg',
  './refer1/B/20171103102831_1_7938.jpg',
  './refer1/B/20171103102831_1_7943.jpg',
  './refer1/B/20171103102831_5_7958.jpg',
  './refer1/B/20171103102832_0_7971.jpg',
  './refer1/B/20171103102832_0_7977.jpg',
  './refer1/B/20171103102832_1_7972.jpg',
  './refer1/B/20171103102832_3_7980.jpg',
  './refer1/B/20171103102832_6_7967.jpg',
  './refer1/B/20171103102833_0_7992.jpg',
  './refer1/B/20171103102833_0_8014.jpg',
  './refer1/B/20171103102833_1_8021.jpg',
  './refer1/B/20171103102833_4_8002.jpg',
  './refer1/B/20171103102833_5_8012.jpg',
  './refer1/B/20171103102833_6_7990.jpg',
  './refer1/B/20171103102834_1_8027.jpg',
  './refer1/B/20171103102834_2_8056.jpg',
  './refer1/B/20171103102834_5_8038.jpg',
  './refer1/B/20171103102834_5_8045.jpg',
  './refer1/B/20171103102835_1_8073.jpg',
  './refer1/B/20171103102835_3_8064.jpg',
  './refer1/B/20171103102835_5_8059.jpg',
  './refer1/B/20171103102835_5_8070.jpg',
  './refer1/B/20171103102836_4_8114.jpg',
  './refer1/B/20171103102836_5_8101.jpg',
  './refer1/B/20171103102836_6_8095.jpg',
  './refer1/B/20171103102837_0_8127.jpg',
  './refer1/B/20171103102837_2_8122.jpg',
  './refer1/B/20171103102837_2_8149.jpg',
  './refer1/B/20171103102837_4_8138.jpg',
  './refer1/B/20171103102837_5_8146.jpg',
  './refer1/B/20171103102838_0_8162.jpg',
  './refer1/B/20171103102838_4_8158.jpg',
  './refer1/B/20171103102838_6_8174.jpg',
  './refer1/B/20171103102839_5_8184.jpg',
  './refer1/B/20171103102839_5_8193.jpg',
  './refer1/B/20171103102840_3_8197.jpg',
  './refer1/B/20171103102840_3_8204.jpg',
  './refer1/B/20171103102840_5_8206.jpg',
  './refer1/B/20171103102840_5_8224.jpg',
  './refer1/B/20171103102840_6_8200.jpg',
  './refer1/B/20171103102841_1_8246.jpg',
  './refer1/B/20171103102841_4_8249.jpg',
  './refer1/B/20171103102841_5_8230.jpg',
  './refer1/B/20171103102841_5_8237.jpg',
  './refer1/B/20171103102841_5_8257.jpg',
  './refer1/B/20171103102842_1_8260.jpg',
  './refer1/B/20171103102842_4_8281.jpg',
  './refer1/B/20171103102843_0_8288.jpg',
  './refer1/B/20171103102843_1_8300.jpg',
  './refer1/B/20171103102843_1_8307.jpg',
  './refer1/B/20171103102844_1_8316.jpg',
  './refer1/B/20171103102844_3_8318.jpg',
  './refer1/B/20171103102844_5_8328.jpg',
  './refer1/B/20171103102844_5_8336.jpg',
  './refer1/B/20171103102845_1_8355.jpg',
  './refer1/B/20171103102845_1_8363.jpg',
  './refer1/B/20171103102845_4_8351.jpg',
  './refer1/B/20171103102845_6_8345.jpg',
  './refer1/B/20171103102846_1_8389.jpg',
  './refer1/B/20171103102846_6_8384.jpg',
  './refer1/B/20171103102847_1_8412.jpg',
  './refer1/B/20171103102847_3_8399.jpg',
  './refer1/B/20171103102848_1_8436.jpg',
  './refer1/B/20171103102848_5_8425.jpg',
  './refer1/B/20171103102848_6_8434.jpg',
  './refer1/B/20171103102849_4_8467.jpg',
  './refer1/B/20171103102849_5_8468.jpg',
  './refer1/B/20171103102850_1_8479.jpg',
  './refer1/B/20171103102850_4_8476.jpg',
  './refer1/B/20171103102850_4_8491.jpg',
  './refer1/B/20171103102850_6_8484.jpg',
  './refer1/B/20171103102851_4_8515.jpg',
  './refer1/B/20171103102851_6_8510.jpg',
  './refer1/B/20171103102852_1_8538.jpg',
  './refer1/B/20171103102853_1_8558.jpg',
  './refer1/B/20171103102853_6_8554.jpg',
  './refer1/B/20171103102854_0_8565.jpg',
  './refer1/B/20171103102854_1_8572.jpg',
  './refer1/B/20171103102854_4_8592.jpg',
  './refer1/B/20171103102854_6_8584.jpg',
  './refer1/B/20171103102855_1_8597.jpg',
  './refer1/B/20171103102855_1_8611.jpg',
  './refer1/B/20171103102855_5_8608.jpg',
  './refer1/B/20171103102856_1_8627.jpg',
  './refer1/B/20171103102856_3_8637.jpg',
  './refer1/B/20171103102856_5_8621.jpg',
  './refer1/B/20171103102857_1_8642.jpg',
  './refer1/B/20171103102857_3_8658.jpg',
  './refer1/B/20171103102857_4_8645.jpg',
  './refer1/B/20171103102857_5_8639.jpg',
  './refer1/B/20171103102857_5_8660.jpg',
  './refer1/B/20171103102857_5_8667.jpg',
  './refer1/B/20171103102858_4_8684.jpg',
  './refer1/B/20171103102858_6_8675.jpg',
  './refer1/B/20171103102859_0_8696.jpg',
  './refer1/B/20171103102859_5_8695.jpg',
  './refer1/B/20171103102900_6_8724.jpg',
  './refer1/B/20171103102901_1_8751.jpg',
  './refer1/B/20171103102901_5_8746.jpg',
  './refer1/B/20171103102902_0_8758.jpg',
  './refer1/B/20171103102902_0_8766.jpg',
  './refer1/B/20171103102902_1_8769.jpg',
  './refer1/B/20171103102903_0_8785.jpg',
  './refer1/B/20171103102903_0_8793.jpg',
  './refer1/B/20171103102903_1_8801.jpg',
  './refer1/B/20171103102903_5_8780.jpg',
  './refer1/B/20171103102904_0_8810.jpg',
  './refer1/B/20171103102904_1_8811.jpg',
  './refer1/B/20171103102905_0_8831.jpg',
  './refer1/B/20171103102905_4_8830.jpg',
  './refer1/B/20171103102905_5_8843.jpg',
  './refer1/B/20171103102905_5_8850.jpg',
  './refer1/B/20171103102906_1_8857.jpg',
  './refer1/B/20171103102906_1_8876.jpg',
  './refer1/B/20171103102906_3_8859.jpg',
  './refer1/B/20171103102906_4_8855.jpg',
  './refer1/B/20171103102906_4_8872.jpg',
  './refer1/B/20171103102907_3_8885.jpg',
  './refer1/B/20171103102907_4_8907.jpg',
  './refer1/B/20171103102907_5_8894.jpg',
  './refer1/B/20171103102907_5_8902.jpg',
  './refer1/B/20171103102908_1_8909.jpg',
  './refer1/B/20171103102908_1_8917.jpg',
  './refer1/B/20171103102908_5_8930.jpg',
  './refer1/B/20171103102909_1_8956.jpg',
  './refer1/B/20171103102909_4_8936.jpg',
  './refer1/B/20171103102909_4_8943.jpg',
  './refer1/B/20171103102909_4_8954.jpg',
  './refer1/B/20171103102909_5_8949.jpg',
  './refer1/B/20171103102910_0_8981.jpg',
  './refer1/B/20171103102910_1_8974.jpg',
  './refer1/B/20171103102910_5_8964.jpg',
  './refer1/B/20171103102911_6_8994.jpg',
  './refer1/B/20171103102911_6_9007.jpg',
  './refer1/B/20171103102912_1_9028.jpg',
  './refer1/B/20171103102912_3_9025.jpg',
  './refer1/B/20171103102912_5_9014.jpg',
  './refer1/B/20171103102913_1_9039.jpg',
  './refer1/B/20171103102913_3_9062.jpg',
  './refer1/B/20171103102913_4_9056.jpg',
  './refer1/B/20171103102913_5_9057.jpg',
  './refer1/B/20171103102914_0_9069.jpg',
  './refer1/B/20171103102914_5_9087.jpg',
  './refer1/B/20171103102915_1_9106.jpg',
  './refer1/B/20171103102915_3_9092.jpg',
  './refer1/B/20171103102915_4_9118.jpg',
  './refer1/B/20171103102915_5_9103.jpg',
  './refer1/B/20171103102916_1_9141.jpg',
  './refer1/B/20171103102916_3_9130.jpg',
  './refer1/B/20171103102916_5_9119.jpg',
  './refer1/B/20171103102916_5_9125.jpg',
  './refer1/B/20171103102916_5_9137.jpg',
  './refer1/B/20171103102917_5_9153.jpg',
  './refer1/B/20171103102917_5_9161.jpg',
  './refer1/B/20171103102917_5_9168.jpg',
  './refer1/B/20171103102918_0_9178.jpg',
  './refer1/B/20171103102918_1_9186.jpg',
  './refer1/B/20171103102918_3_9173.jpg',
  './refer1/B/20171103102919_4_9203.jpg',
  './refer1/B/20171103102919_4_9216.jpg',
  './refer1/B/20171103102919_5_9210.jpg',
  './refer1/B/20171103102920_4_9221.jpg',
  './refer1/B/20171103102920_6_9235.jpg',
  './refer1/B/20171103102921_1_9271.jpg',
  './refer1/B/20171103102921_3_9255.jpg',
  './refer1/B/20171103102921_5_9266.jpg',
  './refer1/B/20171103102921_6_9258.jpg',
  './refer1/B/20171103102922_2_9279.jpg',
  './refer1/B/20171103102922_5_9293.jpg',
  './refer1/B/20171103102923_0_9315.jpg',
  './refer1/B/20171103102923_1_9296.jpg',
  './refer1/B/20171103102923_2_9310.jpg',
  './refer1/B/20171103102923_5_9313.jpg',
  './refer1/B/20171103102924_1_9323.jpg',
  './refer1/B/20171103102924_1_9337.jpg',
  './refer1/B/20171103102925_1_9371.jpg',
  './refer1/B/20171103102925_4_9349.jpg',
  './refer1/B/20171103102925_5_9355.jpg',
  './refer1/B/20171103102925_5_9368.jpg',
  './refer1/B/20171103102926_0_9387.jpg',
  './refer1/B/20171103102926_5_9402.jpg',
  './refer1/B/20171103102927_1_9415.jpg',
  './refer1/B/20171103102927_3_9421.jpg',
  './refer1/B/20171103102927_5_9409.jpg',
  './refer1/B/20171103102928_1_9440.jpg',
  './refer1/B/20171103102928_2_9450.jpg',
  './refer1/B/20171103102928_4_9429.jpg',
  './refer1/B/20171103102928_6_9438.jpg',
  './refer1/B/20171103102929_1_9463.jpg',
  './refer1/B/20171103102929_4_9459.jpg',
  './refer1/B/20171103102929_6_9468.jpg',
  './refer1/B/20171103102930_1_9483.jpg',
  './refer1/B/20171103102930_1_9497.jpg',
  './refer1/B/20171103102930_3_9485.jpg',
  './refer1/B/20171103102930_3_9492.jpg',
  './refer1/B/20171103102930_3_9499.jpg',
  './refer1/B/20171103102930_4_9480.jpg',
  './refer1/B/20171103102930_6_9495.jpg',
  './refer1/B/20171103102931_1_9513.jpg',
  './refer1/B/20171103102931_5_9510.jpg',
  './refer1/B/20171103102931_5_9525.jpg',
  './refer1/B/20171103102931_5_9531.jpg',
  './refer1/B/20171103102932_1_9534.jpg',
  './refer1/B/20171103102932_5_9551.jpg',
  './refer1/B/20171103102932_6_9545.jpg',
  './refer1/B/20171103102933_1_9577.jpg',
  './refer1/B/20171103102933_4_9556.jpg',
  './refer1/B/20171103102933_5_9569.jpg',
  './refer1/B/20171103102933_5_9575.jpg',
  './refer1/B/20171103102933_6_9563.jpg',
  './refer1/B/20171103102934_5_9594.jpg',
  './refer1/B/20171103102934_5_9602.jpg',
  './refer1/B/20171103102935_1_9605.jpg',
  './refer1/B/20171103102935_1_9626.jpg',
  './refer1/B/20171103102935_4_9622.jpg',
  './refer1/B/20171103102935_6_9617.jpg',
  './refer1/B/20171103102936_1_9636.jpg',
  './refer1/B/20171103102936_3_9638.jpg',
  './refer1/B/20171103102936_5_9648.jpg',
  './refer1/B/20171103102936_5_9656.jpg',
  './refer1/B/20171103102937_1_9664.jpg',
  './refer1/B/20171103102937_1_9672.jpg',
  './refer1/B/20171103102937_3_9666.jpg',
  './refer1/B/20171103102938_1_9680.jpg',
  './refer1/B/20171103102938_5_9696.jpg',
  './refer1/B/20171103102939_1_9698.jpg',
  './refer1/B/20171103102939_1_9710.jpg',
  './refer1/B/20171103102939_1_9719.jpg',
  './refer1/B/20171103102939_5_9702.jpg',
  './refer1/B/20171103102940_0_9745.jpg',
  './refer1/B/20171103102940_1_9739.jpg',
  './refer1/B/20171103102940_4_9735.jpg',
  './refer1/B/20171103102940_5_9729.jpg',
  './refer1/B/20171103102941_0_9753.jpg',
  './refer1/B/20171103102941_1_9779.jpg',
  './refer1/B/20171103102941_2_9774.jpg',
  './refer1/B/20171103102941_4_9770.jpg',
  './refer1/B/20171103102941_6_9765.jpg',
  './refer1/B/20171103102942_0_9785.jpg',
  './refer1/B/20171103102942_1_9793.jpg',
  './refer1/B/20171103102942_1_9808.jpg',
  './refer1/B/20171103102942_2_9787.jpg',
  './refer1/B/20171103102942_5_9804.jpg',
  './refer1/B/20171103102943_2_9817.jpg',
  './refer1/B/20171103102943_5_9836.jpg',
  './refer1/B/20171103102943_6_9824.jpg',
  './refer1/B/20171103102944_5_9843.jpg',
  './refer1/B/20171103102944_5_9850.jpg',
  './refer1/B/20171103102944_5_9865.jpg',
  './refer1/B/20171103102945_5_9872.jpg',
  './refer1/B/20171103102945_5_9879.jpg',
  './refer1/B/20171103102945_5_9894.jpg',
  './refer1/B/20171103102945_6_9887.jpg',
  './refer1/B/20171103102946_3_9899.jpg',
  './refer1/B/20171103102946_6_9911.jpg',
  './refer1/B/20171103102947_0_9927.jpg',
  './refer1/B/20171103102947_5_9950.jpg',
  './refer1/B/20171103102947_6_9926.jpg',
  './refer1/B/20171103102948_5_9956.jpg',
  './refer1/B/20171103102948_5_9962.jpg',
  './refer1/B/20171103102948_5_9968.jpg',
  './refer1/B/20171103102949_1_10000.jpg',
  './refer1/B/20171103102949_2_9995.jpg',
  './refer1/B/20171103102949_4_10009.jpg',
  './refer1/B/20171103102949_4_9985.jpg',
  './refer1/B/20171103102949_5_10010.jpg',
  './refer1/B/20171103102949_5_9991.jpg',
  './refer1/B/20171103102949_6_9980.jpg',
  './refer1/B/20171103102950_0_10017.jpg',
  './refer1/B/20171103102950_1_10034.jpg',
  './refer1/B/20171103102950_2_10025.jpg',
  './refer1/B/20171103102950_2_10035.jpg',
  './refer1/B/20171103102950_3_10020.jpg',
  './refer1/B/20171103102950_3_10026.jpg',
  './refer1/B/20171103102950_4_10015.jpg',
  './refer1/B/20171103102950_5_10016.jpg',
  './refer1/B/20171103102951_0_10052.jpg',
  './refer1/B/20171103102951_1_10041.jpg',
  './refer1/B/20171103102951_1_10053.jpg',
  './refer1/B/20171103102951_1_10061.jpg',
  './refer1/B/20171103102951_2_10042.jpg',
  './refer1/B/20171103102951_4_10051.jpg',
  './refer1/B/20171103102951_4_10064.jpg',
  './refer1/B/20171103102952_1_10086.jpg',
  './refer1/B/20171103102952_2_10087.jpg',
  './refer1/B/20171103102952_5_10083.jpg',
  './refer1/B/20171103102953_1_10099.jpg',
  './refer1/B/20171103102953_1_10105.jpg',
  './refer1/B/20171103102953_2_10106.jpg',
  './refer1/B/20171103102953_3_10101.jpg',
  './refer1/B/20171103102953_4_10123.jpg',
  './refer1/B/20171103102953_5_10096.jpg',
  './refer1/B/20171103102953_5_10116.jpg',
  './refer1/B/20171103102953_6_10097.jpg',
  './refer1/B/20171103102953_6_10117.jpg',
  './refer1/B/20171103102954_0_10144.jpg',
  './refer1/B/20171103102954_1_10145.jpg',
  './refer1/B/20171103102954_5_10124.jpg',
  './refer1/B/20171103102954_5_10141.jpg',
  './refer1/B/20171103102954_6_10134.jpg',
  './refer1/B/20171103102954_7_10135.jpg',
  './refer1/B/20171103102955_2_10153.jpg',
  './refer1/B/20171103102955_3_10168.jpg',
  './refer1/B/20171103102955_4_10155.jpg',
  './refer1/B/20171103102955_4_10163.jpg',
  './refer1/B/20171103102955_4_10176.jpg',
  './refer1/B/20171103102955_5_10164.jpg',
  './refer1/B/20171103102955_5_10177.jpg',
  './refer1/B/20171103102956_1_10185.jpg',
  './refer1/B/20171103102956_4_10195.jpg',
  './refer1/B/20171103102956_4_10200.jpg',
  './refer1/B/20171103102957_2_10209.jpg',
  './refer1/B/20171103102957_3_10216.jpg',
  './refer1/B/20171103102957_6_10219.jpg',
  './refer1/B/20171103102958_0_10227.jpg',
  './refer1/B/20171103102958_1_10234.jpg',
  './refer1/B/20171103102958_2_10241.jpg',
  './refer1/B/20171103102959_4_10265.jpg',
  './refer1/B/20171103102959_5_10271.jpg',
  './refer1/B/20171103103000_3_10288.jpg',
  './refer1/B/20171103103000_6_10295.jpg',
  './refer1/B/20171103103001_0_10318.jpg',
  './refer1/B/20171103103001_2_10308.jpg',
  './refer1/B/20171103103001_4_10329.jpg',
  './refer1/B/20171103103001_5_10317.jpg',
  './refer1/B/20171103103002_1_10338.jpg',
  './refer1/B/20171103103002_1_10346.jpg',
  './refer1/B/20171103103002_6_10336.jpg',
  './refer1/B/20171103103003_1_10365.jpg',
  './refer1/B/20171103103003_1_10373.jpg',
  './refer1/B/20171103103003_1_10380.jpg',
  './refer1/B/20171103103003_5_10356.jpg',
  './refer1/B/20171103103004_6_10392.jpg',
  './refer1/B/20171103103005_2_10419.jpg',
  './refer1/B/20171103103005_4_10402.jpg',
  './refer1/B/20171103103005_5_10408.jpg',
  './refer1/B/20171103103005_5_10414.jpg',
  './refer1/B/20171103103006_0_10423.jpg',
  './refer1/B/20171103103006_1_10430.jpg',
  './refer1/B/20171103103006_4_10444.jpg',
  './refer1/B/20171103103006_5_10439.jpg',
  './refer1/B/20171103103007_5_10459.jpg',
  './refer1/B/20171103103007_5_10466.jpg',
  './refer1/B/20171103103008_1_10480.jpg',
  './refer1/B/20171103103008_1_10487.jpg',
  './refer1/B/20171103103008_2_10475.jpg',
  './refer1/B/20171103103008_4_10472.jpg',
  './refer1/B/20171103103009_1_10519.jpg',
  './refer1/B/20171103103009_5_10512.jpg',
  './refer1/B/20171103103010_0_10527.jpg',
  './refer1/B/20171103103010_1_10535.jpg',
  './refer1/B/20171103103010_2_10526.jpg',
  './refer1/B/20171103103010_5_10545.jpg',
  './refer1/B/20171103103011_0_10552.jpg',
  './refer1/B/20171103103011_1_10557.jpg',
  './refer1/B/20171103103011_1_10566.jpg',
  './refer1/B/20171103103012_4_10582.jpg',
  './refer1/B/20171103103012_5_10603.jpg',
  './refer1/B/20171103103012_7_10591.jpg',
  './refer1/B/20171103103013_1_10610.jpg',
  './refer1/B/20171103103013_1_10620.jpg',
  './refer1/B/20171103103013_3_10607.jpg',
  './refer1/B/20171103103014_1_10648.jpg',
  './refer1/B/20171103103014_3_10638.jpg',
  './refer1/B/20171103103014_4_10630.jpg',
  './refer1/B/20171103103014_6_10645.jpg',
  './refer1/B/20171103103015_1_10675.jpg',
  './refer1/B/20171103103015_3_10663.jpg',
  './refer1/B/20171103103015_4_10672.jpg',
  './refer1/B/20171103103015_5_10659.jpg',
  './refer1/B/20171103103016_5_10695.jpg',
  './refer1/B/20171103103016_5_10702.jpg',
  './refer1/B/20171103103016_6_10687.jpg',
  './refer1/B/20171103103017_1_10712.jpg',
  './refer1/B/20171103103017_1_10719.jpg',
  './refer1/B/20171103103017_1_10732.jpg',
  './refer1/B/20171103103017_4_10708.jpg',
  './refer1/B/20171103103017_5_10730.jpg',
  './refer1/B/20171103103018_0_10739.jpg',
  './refer1/B/20171103103018_2_10748.jpg',
  './refer1/B/20171103103019_1_10754.jpg',
  './refer1/B/20171103103019_1_10773.jpg',
  './refer1/B/20171103103019_2_10766.jpg',
  './refer1/B/20171103103020_2_10797.jpg',
  './refer1/B/20171103103020_4_10783.jpg',
  './refer1/B/20171103103021_1_10807.jpg',
  './refer1/B/20171103103021_5_10804.jpg',
  './refer1/B/20171103103021_5_10819.jpg',
  './refer1/B/20171103103022_1_10841.jpg',
  './refer1/B/20171103103022_4_10828.jpg',
  './refer1/B/20171103103023_1_10856.jpg',
  './refer1/B/20171103103023_1_10862.jpg',
  './refer1/B/20171103103023_1_10869.jpg',
  './refer1/B/20171103103023_6_10852.jpg',
  './refer1/B/20171103103024_1_10902.jpg',
  './refer1/B/20171103103024_5_10880.jpg',
  './refer1/B/20171103103024_5_10893.jpg',
  './refer1/B/20171103103025_1_10910.jpg',
  './refer1/B/20171103103026_0_10951.jpg',
  './refer1/B/20171103103026_0_10959.jpg',
  './refer1/B/20171103103026_1_10949.jpg',
  './refer1/B/20171103103026_4_10946.jpg',
  './refer1/B/20171103103027_1_10966.jpg',
  './refer1/B/20171103103027_4_10994.jpg',
  './refer1/B/20171103103027_5_10977.jpg',
  './refer1/B/20171103103027_6_10989.jpg',
  './refer1/B/20171103103028_6_11013.jpg',
  './refer1/B/20171103103029_1_11046.jpg',
  './refer1/B/20171103103029_4_11027.jpg',
  './refer1/B/20171103103029_4_11038.jpg',
  './refer1/B/20171103103030_1_11054.jpg',
  './refer1/B/20171103103030_2_11069.jpg',
  './refer1/B/20171103103030_4_11064.jpg',
  './refer1/B/20171103103031_5_11075.jpg',
  './refer1/B/20171103103032_0_11105.jpg',
  './refer1/B/20171103103032_1_11125.jpg',
  './refer1/B/20171103103032_3_11116.jpg',
  './refer1/B/20171103103032_5_11123.jpg',
  './refer1/B/20171103103033_0_11133.jpg',
  './refer1/B/20171103103033_1_11140.jpg',
  './refer1/B/20171103103034_0_11173.jpg',
  './refer1/B/20171103103034_4_11172.jpg',
  './refer1/B/20171103103035_0_11188.jpg',
  './refer1/B/20171103103035_4_11199.jpg',
  './refer1/B/20171103103035_5_11186.jpg',
  './refer1/B/20171103103036_5_11206.jpg',
  './refer1/B/20171103103036_5_11225.jpg',
  './refer1/B/20171103103037_0_11241.jpg',
  './refer1/B/20171103103037_3_11250.jpg',
  './refer1/B/20171103103037_5_11231.jpg',
  './refer1/B/20171103103037_5_11238.jpg',
  './refer1/B/20171103103038_2_11274.jpg',
  './refer1/B/20171103103038_3_11263.jpg',
  './refer1/B/20171103103038_5_11258.jpg',
  './refer1/B/20171103103038_5_11270.jpg',
  './refer1/B/20171103103039_0_11297.jpg',
  './refer1/B/20171103103039_0_11304.jpg',
  './refer1/B/20171103103039_4_11293.jpg',
  './refer1/B/20171103103039_8_11288.jpg',
  './refer1/B/20171103103040_5_11318.jpg',
  './refer1/B/20171103103040_5_11325.jpg',
  './refer1/B/20171103103041_3_11330.jpg',
  './refer1/B/20171103103041_3_11343.jpg',
  './refer1/B/20171103103041_6_11338.jpg',
  './refer1/B/20171103103042_0_11357.jpg',
  './refer1/B/20171103103042_2_11365.jpg',
  './refer1/B/20171103103042_6_11356.jpg',
  './refer1/B/20171103103043_1_11377.jpg',
  './refer1/B/20171103103043_1_11392.jpg',
  './refer1/B/20171103103043_5_11390.jpg',
  './refer1/B/20171103103044_3_11412.jpg',
  './refer1/B/20171103103044_4_11408.jpg',
  './refer1/B/20171103103044_5_11403.jpg',
  './refer1/B/20171103103045_1_11424.jpg',
  './refer1/B/20171103103045_5_11439.jpg',
  './refer1/B/20171103103045_6_11422.jpg',
  './refer1/B/20171103103046_0_11450.jpg',
  './refer1/B/20171103103046_0_11456.jpg',
  './refer1/B/20171103103047_5_11486.jpg',
  './refer1/B/20171103103048_1_11504.jpg',
  './refer1/B/20171103103048_5_11515.jpg',
  './refer1/B/20171103103049_5_11525.jpg',
  './refer1/B/20171103103049_5_11539.jpg',
  './refer1/B/20171103103049_5_11545.jpg',
  './refer1/B/20171103103049_6_11533.jpg',
  './refer1/B/20171103103050_2_11569.jpg',
  './refer1/B/20171103103050_4_11556.jpg',
  './refer1/B/20171103103050_5_11566.jpg',
  './refer1/B/20171103103051_0_11593.jpg',
  './refer1/B/20171103103051_1_11599.jpg',
  './refer1/B/20171103103051_2_11585.jpg',
  './refer1/B/20171103103051_6_11579.jpg',
  './refer1/B/20171103103052_0_11619.jpg',
  './refer1/B/20171103103052_4_11608.jpg',
  './refer1/B/20171103103053_1_11643.jpg',
  './refer1/B/20171103103053_1_11658.jpg',
  './refer1/B/20171103103053_4_11633.jpg',
  './refer1/B/20171103103053_5_11655.jpg',
  './refer1/B/20171103103054_1_11674.jpg',
  './refer1/B/20171103103054_5_11671.jpg',
  './refer1/B/20171103103055_2_11689.jpg',
  './refer1/B/20171103103055_5_11685.jpg',
  './refer1/B/20171103103055_5_11697.jpg',
  './refer1/B/20171103103055_5_11703.jpg',
  './refer1/B/20171103103056_0_11729.jpg',
  './refer1/B/20171103103056_5_11710.jpg',
  './refer1/B/20171103103056_5_11717.jpg',
  './refer1/B/20171103103056_5_11727.jpg',
  './refer1/B/20171103103057_5_11748.jpg',
  './refer1/B/20171103103058_0_11768.jpg',
  './refer1/B/20171103103058_2_11766.jpg',
  './refer1/B/20171103103058_2_11770.jpg',
  './refer1/B/20171103103058_4_11761.jpg',
  './refer1/B/20171103103058_5_11782.jpg',
  './refer1/B/20171103103059_1_11790.jpg',
  './refer1/B/20171103103059_1_11802.jpg',
  './refer1/B/20171103103059_4_11787.jpg',
  './refer1/B/20171103103059_5_11806.jpg',
  './refer1/B/20171103103100_0_11823.jpg',
  './refer1/B/20171103103100_6_11842.jpg',
  './refer1/B/20171103103101_0_11860.jpg',
  './refer1/B/20171103103101_4_11873.jpg',
  './refer1/B/20171103103101_5_11849.jpg',
  './refer1/B/20171103103101_5_11858.jpg',
  './refer1/B/20171103103102_4_11879.jpg',
  './refer1/B/20171103103102_6_11889.jpg',
  './refer1/B/20171103103103_1_11914.jpg',
  './refer1/B/20171103103103_5_11907.jpg',
  './refer1/B/20171103103104_1_11928.jpg',
  './refer1/B/20171103103104_4_11939.jpg',
  './refer1/B/20171103103104_5_11946.jpg',
  './refer1/B/20171103103105_1_11967.jpg',
  './refer1/B/20171103103105_3_11964.jpg',
  './refer1/B/20171103103105_4_11958.jpg',
  './refer1/B/20171103103105_6_11953.jpg',
  './refer1/B/20171103103106_1_11979.jpg',
  './refer1/B/20171103103106_1_12005.jpg',
  './refer1/B/20171103103106_5_12001.jpg',
  './refer1/B/20171103103107_4_12022.jpg',
  './refer1/B/20171103103107_4_12035.jpg',
  './refer1/B/20171103103107_5_12016.jpg',
  './refer1/B/20171103103107_5_12029.jpg',
  './refer1/B/20171103103107_5_12042.jpg',
  './refer1/B/20171103103108_0_12065.jpg',
  './refer1/B/20171103103108_5_12050.jpg',
  './refer1/B/20171103103108_5_12057.jpg',
  './refer1/B/20171103103109_1_12093.jpg',
  './refer1/B/20171103103109_4_12077.jpg',
  './refer1/B/20171103103109_5_12099.jpg',
  './refer1/B/20171103103109_5_12105.jpg',
  './refer1/B/20171103103109_6_12084.jpg',
  './refer1/B/20171103103110_1_12136.jpg',
  './refer1/B/20171103103110_2_12128.jpg',
  './refer1/B/20171103103110_4_12114.jpg',
  './refer1/B/20171103103111_1_12145.jpg',
  './refer1/B/20171103103111_1_12159.jpg',
  './refer1/B/20171103103111_1_12173.jpg',
  './refer1/B/20171103103111_6_12171.jpg',
  './refer1/B/20171103103112_0_12183.jpg',
  './refer1/B/20171103103112_3_12205.jpg',
  './refer1/B/20171103103112_5_12181.jpg',
  './refer1/B/20171103103112_5_12195.jpg',
  './refer1/B/20171103103112_5_12201.jpg',
  './refer1/B/20171103103119_2_12383.jpg',
  './refer1/B/20171103103119_5_12386.jpg',
  './refer1/B/20171103103129_1_12648.jpg',
  './refer1/B/20171103103135_2_12830.jpg',
  './refer1/B/20171103103138_3_12899.jpg',
  './refer1/B/20171103103139_2_12927.jpg',
  './refer1/B/20171103103152_4_13265.jpg',
  './refer1/B/20171103103154_2_13333.jpg',
  './refer1/B/20171103103155_1_13365.jpg',
  './refer1/B/20171103103206_2_13651.jpg',
  './refer1/B/20171103103305_3_15227.jpg',
  './refer1/B/20171103103314_2_15476.jpg',
  './refer1/B/20171103103315_3_15504.jpg',
  './refer1/B/20171103103320_6_15646.jpg',
  './refer1/B/20171103103321_2_15659.jpg',
  './refer1/B/20171103103344_5_16312.jpg',
  './refer1/B/20171103103348_4_16449.jpg',
  './refer1/B/20171103103351_6_16536.jpg',
  './refer1/B/20171103103353_7_16592.jpg',
  './refer1/B/20171103103355_3_16661.jpg',
  './refer1/B/20171103103359_5_16790.jpg',
  './refer1/B/20171103103406_1_16991.jpg',
  './refer1/B/20171103103406_2_16986.jpg',
  './refer1/B/20171103103406_3_16987.jpg',
  './refer1/B/20171103103407_2_16992.jpg',
  './refer1/B/20171103103407_2_16996.jpg',
  './refer1/B/20171103103407_2_17016.jpg',
  './refer1/B/20171103103407_3_17009.jpg',
  './refer1/B/20171103103408_3_17023.jpg',
  './refer1/B/20171103103408_3_17037.jpg',
  './refer1/B/20171103103413_6_17185.jpg',
  './refer1/B/20171103103418_5_17335.jpg',
  './refer1/B/20171103103421_5_17406.jpg',
  './refer1/B/20171103103422_5_17439.jpg',
  './refer1/B/20171103103428_6_17544.jpg',
  './refer1/B/20171103103429_5_17562.jpg',
  './refer1/B/20171103103433_1_17663.jpg',
  './refer1/B/20171103103435_5_17697.jpg',
  './refer1/B/20171103103437_2_17775.jpg',
  './refer1/B/20171103103437_3_17756.jpg',
  './refer1/B/20171103103437_3_17763.jpg',
  './refer1/B/20171103103437_3_17769.jpg',
  './refer1/B/20171103103438_3_17788.jpg',
  './refer1/B/20171103103446_4_18039.jpg',
  './refer1/B/20171103103448_6_18076.jpg',
  './refer1/B/20171103103449_6_18108.jpg',
  './refer1/B/20171103103455_4_18295.jpg',
  './refer1/B/20171103103459_5_18392.jpg',
  './refer1/B/20171103103504_1_18541.jpg',
  './refer1/B/20171103103504_2_18557.jpg',
  './refer1/B/20171103103504_3_18536.jpg',
  './refer1/B/20171103103504_3_18551.jpg',
  './refer1/B/20171103103504_5_18538.jpg',
  './refer1/B/20171103103505_3_18563.jpg',
  './refer1/B/20171103103513_6_18803.jpg',
  './refer1/B/20171103103519_6_19005.jpg',
  './refer1/B/20171103103520_3_19028.jpg',
  './refer1/B/20171103103523_7_19110.jpg',
  './refer1/B/20171103103532_4_19350.jpg',
  './refer1/B/20171103103533_1_19409.jpg',
  './refer1/B/20171103103533_3_19399.jpg',
  './refer1/B/20171103103534_3_19417.jpg',
  './refer1/B/20171103103534_4_19425.jpg',
  './refer1/B/20171103103536_4_19491.jpg',
  './refer1/B/20171103103548_5_19849.jpg',
  './refer1/B/20171103103549_5_19869.jpg',
  './refer1/B/20171103103552_6_19946.jpg',
  './refer1/B/20171103103553_4_19986.jpg',
  './refer1/B/20171103103557_0_20109.jpg',
  './refer1/B/20171103103600_5_20195.jpg',
  './refer1/B/20171103103602_1_20258.jpg',
  './refer1/B/20171103103602_5_20262.jpg',
  './refer1/B/20171103103603_2_20279.jpg',
  './refer1/B/20171103103603_2_20293.jpg',
  './refer1/B/20171103103603_3_20267.jpg',
  './refer1/B/20171103103603_3_20273.jpg',
  './refer1/B/20171103103603_4_20289.jpg',
  './refer1/B/20171103103604_2_20314.jpg',
  './refer1/B/20171103103604_3_20308.jpg',
  './refer1/B/20171103103604_3_20323.jpg',
  './refer1/B/20171103103604_5_20304.jpg',
  './refer1/B/20171103103606_3_20379.jpg',
  './refer1/B/20171103103613_4_20556.jpg',
  './refer1/B/20171103103620_3_20786.jpg',
  './refer1/B/20171103103620_5_20781.jpg',
  './refer1/B/20171103103626_5_20963.jpg',
  './refer1/B/20171103103627_3_21006.jpg',
  './refer1/B/20171103103636_4_21260.jpg',
  './refer1/B/20171103103640_1_21389.jpg',
  './refer1/B/20171103103640_2_21383.jpg',
  './refer1/B/20171103103646_5_21574.jpg',
  './refer1/B/20171103103652_5_21754.jpg',
  './refer1/B/20171103103655_5_21831.jpg',
  './refer1/B/20171103103659_7_21959.jpg',
  './refer1/B/20171103103700_5_21988.jpg',
  './refer1/B/20171103103706_5_22158.jpg',
  './refer1/B/20171103103707_6_22165.jpg',
  './refer1/B/20171103103709_5_22250.jpg',
  './refer1/B/20171103103715_2_22417.jpg',
  './refer1/B/20171103103715_3_22430.jpg',
  './refer1/B/20171103103716_3_22442.jpg',
  './refer1/B/20171103103716_3_22450.jpg',
  './refer1/B/20171103103716_3_22457.jpg',
  './refer1/B/20171103103718_4_22514.jpg',
  './refer1/B/20171103103719_4_22547.jpg',
  './refer1/B/20171103103720_3_22577.jpg',
  './refer1/B/20171103103722_5_22622.jpg',
  './refer1/B/20171103103726_5_22733.jpg',
  './refer1/B/20171103103726_5_22739.jpg',
  './refer1/B/20171103103727_4_22769.jpg',
  './refer1/B/20171103103727_5_22782.jpg',
  './refer1/B/20171103103730_6_22867.jpg',
  './refer1/B/20171103103733_4_22936.jpg',
  './refer1/B/20171103103739_3_23107.jpg',
  './refer1/B/20171103103739_6_23119.jpg',
  './refer1/B/20171103103744_6_23275.jpg',
  './refer1/B/20171103103747_1_23359.jpg',
  './refer1/B/20171103103747_2_23347.jpg',
  './refer1/B/20171103103747_3_23354.jpg',
  './refer1/B/20171103103749_3_23400.jpg',
  './refer1/B/20171103103801_3_23745.jpg',
  './refer1/B/20171103103804_4_23831.jpg',
  './refer1/B/20171103103812_3_24071.jpg',
  './refer1/B/20171103103816_2_24186.jpg',
  './refer1/B/20171103103817_5_24214.jpg',
  './refer1/B/20171103103821_5_24320.jpg',
  './refer1/B/20171103103821_6_24321.jpg',
  './refer1/B/20171103103823_2_24382.jpg',
  './refer1/B/20171103103823_2_24390.jpg',
  './refer1/B/20171103103823_2_24397.jpg',
  './refer1/B/20171103103823_4_24399.jpg',
  './refer1/B/20171103103824_3_24405.jpg',
  './refer1/B/20171103103824_3_24414.jpg',
  './refer1/B/20171103103824_3_24420.jpg',
  './refer1/B/20171103103824_3_24428.jpg',
  './refer1/B/20171103103825_2_24447.jpg',
  './refer1/B/20171103103825_3_24435.jpg',
  './refer1/B/20171103103825_3_24440.jpg',
  './refer1/B/20171103103829_2_24555.jpg',
  './refer1/B/20171103103833_2_24676.jpg',
  './refer1/B/20171103103836_4_24741.jpg',
  './refer1/B/20171103103840_5_24862.jpg',
  './refer1/B/20171103103846_4_25030.jpg',
  './refer1/B/20171103103851_0_25168.jpg',
  './refer1/B/20171103103855_4_25264.jpg',
  './refer1/B/20171103103900_5_25404.jpg',
  './refer1/B/20171103103901_3_25443.jpg',
  './refer1/B/20171103103901_3_25451.jpg',
  './refer1/B/20171103103912_3_25730.jpg',
  './refer1/B/20171103103919_3_25930.jpg',
  './refer1/B/20171103103927_0_26162.jpg',
  './refer1/B/20171103103928_2_26193.jpg',
  './refer1/B/20171103103928_3_26184.jpg',
  './refer1/B/20171103103928_3_26201.jpg',
  './refer1/B/20171103103928_4_26176.jpg',
  './refer1/B/20171103103929_1_26210.jpg',
  './refer1/B/20171103103929_2_26218.jpg',
  './refer1/B/20171103103929_2_26226.jpg',
  './refer1/B/20171103103930_1_26253.jpg',
  './refer1/B/20171103103930_3_26234.jpg',
  './refer1/B/20171103103931_0_26257.jpg',
  './refer1/B/20171103103931_1_26265.jpg',
  './refer1/B/20171103103931_1_26277.jpg',
  './refer1/B/20171103103931_1_26283.jpg',
  './refer1/B/20171103103931_2_26271.jpg',
  './refer1/B/20171103103932_0_26288.jpg',
  './refer1/B/20171103103932_2_26294.jpg',
  './refer1/B/20171103103932_2_26303.jpg',
  './refer1/B/20171103103932_3_26299.jpg',
  './refer1/B/20171103103933_2_26315.jpg',
  './refer1/B/20171103103933_2_26329.jpg',
  './refer1/B/20171103103933_3_26323.jpg',
  './refer1/B/20171103103933_4_26310.jpg',
  './refer1/B/20171103103934_2_26343.jpg',
  './refer1/B/20171103103934_2_26350.jpg',
  './refer1/B/20171103103934_3_26359.jpg',
  './refer1/B/20171103103934_5_26339.jpg',
  './refer1/B/20171103103935_2_26381.jpg',
  './refer1/B/20171103103935_2_26388.jpg',
  './refer1/B/20171103103935_3_26382.jpg',
  './refer1/B/20171103103935_4_26368.jpg',
  './refer1/B/20171103103935_5_26377.jpg',
  './refer1/B/20171103103936_3_26396.jpg',
  './refer1/B/20171103103936_4_26403.jpg',
  './refer1/B/20171103103936_4_26416.jpg',
  './refer1/B/20171103103937_0_26426.jpg',
  './refer1/B/20171103103937_2_26421.jpg',
  './refer1/B/20171103103937_2_26439.jpg',
  './refer1/B/20171103103937_3_26433.jpg',
  './refer1/B/20171103103938_1_26455.jpg',
  './refer1/B/20171103103938_2_26462.jpg',
  './refer1/B/20171103103938_2_26470.jpg',
  './refer1/B/20171103103938_4_26449.jpg',
  './refer1/B/20171103103939_1_26477.jpg',
  './refer1/B/20171103103939_2_26493.jpg',
  './refer1/B/20171103103939_2_26500.jpg',
  './refer1/B/20171103103939_3_26489.jpg',
  './refer1/B/20171103103940_2_26506.jpg',
  './refer1/B/20171103103940_2_26519.jpg',
  './refer1/B/20171103103940_2_26527.jpg',
  './refer1/B/20171103103940_4_26514.jpg',
  './refer1/B/20171103103941_0_26533.jpg',
  './refer1/B/20171103103941_1_26539.jpg',
  './refer1/B/20171103103941_4_26548.jpg',
  './refer1/B/20171103103941_4_26553.jpg',
  './refer1/B/20171103103942_2_26557.jpg',
  './refer1/B/20171103103942_2_26564.jpg',
  './refer1/B/20171103103942_2_26570.jpg',
  './refer1/B/20171103103942_2_26577.jpg',
  './refer1/B/20171103103943_2_26584.jpg',
  './refer1/B/20171103103943_2_26598.jpg',
  './refer1/B/20171103103943_4_26593.jpg',
  './refer1/B/20171103103944_2_26608.jpg',
  './refer1/B/20171103103944_2_26623.jpg',
  './refer1/B/20171103103944_4_26635.jpg',
  './refer1/B/20171103103944_6_26619.jpg',
  './refer1/B/20171103103945_1_26660.jpg',
  './refer1/B/20171103103945_2_26648.jpg',
  './refer1/B/20171103103945_4_26656.jpg',
  './refer1/B/20171103103945_5_26644.jpg',
  './refer1/B/20171103103946_2_26681.jpg',
  './refer1/B/20171103103946_3_26675.jpg',
  './refer1/B/20171103103946_4_26669.jpg',
  './refer1/B/20171103103947_3_26689.jpg',
  './refer1/B/20171103103947_3_26696.jpg',
  './refer1/B/20171103103947_3_26702.jpg',
  './refer1/B/20171103103947_5_26715.jpg',
  './refer1/B/20171103103948_3_26737.jpg',
  './refer1/B/20171103103948_4_26722.jpg',
  './refer1/B/20171103103948_4_26732.jpg',
  './refer1/B/20171103103949_1_26749.jpg',
  './refer1/B/20171103103949_2_26750.jpg',
  './refer1/B/20171103103949_2_26756.jpg',
  './refer1/B/20171103103949_2_26763.jpg',
  './refer1/B/20171103103950_1_26768.jpg',
  './refer1/B/20171103103950_1_26787.jpg',
  './refer1/B/20171103103950_2_26781.jpg',
  './refer1/B/20171103103950_3_26776.jpg',
  './refer1/B/20171103103951_2_26804.jpg',
  './refer1/B/20171103103951_2_26811.jpg',
  './refer1/B/20171103103951_3_26796.jpg',
  './refer1/B/20171103104004_5_27166.jpg',
  './refer1/B/20171103104009_2_27295.jpg',
  './refer1/B/20171103104011_2_27346.jpg',
  './refer1/B/20171103104027_3_27780.jpg',
  './refer1/B/20171103104029_5_27820.jpg',
  './refer1/B/20171103104036_2_28019.jpg',
  './refer1/B/20171103104040_0_28117.jpg',
  './refer1/B/20171103104101_4_28663.jpg',
  './refer1/B/20171103104103_5_28718.jpg',
  './refer1/B/20171103104106_2_28798.jpg',
  './refer1/B/20171103104122_1_29282.jpg',
  './refer1/B/20171103104131_3_29527.jpg',
  './refer1/B/20171103104135_4_29661.jpg',
  './refer1/B/20171103104142_3_29853.jpg',
  './refer1/B/20171103104144_2_29894.jpg',
  './refer1/B/20171103104150_1_30066.jpg',
  './refer1/B/20171103104156_2_30232.jpg',
  './refer1/B/20171103104202_6_30388.jpg',
  './refer1/B/20171103104204_2_30424.jpg',
  './refer1/B/20171103104206_6_30495.jpg',
  './refer1/B/20171103104215_3_30733.jpg',
  './refer1/B/20171103104226_3_31015.jpg',
  './refer1/B/20171103104228_6_31081.jpg',
  './refer1/B/20171103104234_7_31259.jpg',
  './refer1/B/20171103104236_6_31312.jpg',
  './refer1/B/20171103104241_6_31468.jpg',
  './refer1/B/20171103104245_6_31593.jpg',
  './refer1/B/20171103104247_5_31647.jpg',
  './refer1/B/20171103104247_6_31656.jpg',
  './refer1/B/20171103104249_2_31699.jpg',
  './refer1/B/20171103104251_6_31748.jpg',
  './refer1/B/20171103104255_6_31867.jpg',
  './refer1/B/20171103104257_0_31912.jpg',
  './refer1/B/20171103104257_5_31925.jpg',
  './refer1/B/20171103104300_6_31992.jpg',
  './refer1/B/20171103104306_6_32177.jpg',
  './refer1/B/20171103104308_4_32219.jpg',
  './refer1/B/20171103104323_0_32625.jpg',
  './refer1/B/20171103104323_4_32616.jpg',
  './refer1/B/20171103104325_7_32683.jpg',
  './refer1/B/20171103104334_5_32921.jpg',
  './refer1/B/20171103104344_4_33196.jpg',
  './refer1/B/20171103104354_2_33467.jpg',
  './refer1/B/20171103104357_1_33554.jpg',
  './refer1/B/20171103104409_2_33892.jpg',
  './refer1/B/20171103104409_3_33871.jpg',
  ...],
 ['./refer1/C/10_0.943613_gray_8722_3101_step5_recog_4_C_0.986796_0.931154.jpg',
  './refer1/C/11_0.957271_gray_10026_4205_step5_recog_3_C_0.993294_0.950852.jpg',
  './refer1/C/12_0.889866_gray_271_114_step5_recog_3_C_0.981380_0.873297.jpg',
  './refer1/C/13_0.978182_gray_6353_3017_step5_recog_3_C_0.997554_0.975789.jpg',
  './refer1/C/15_0.974382_gray_21251_8749_step5_recog_3_C_0.992148_0.966731.jpg',
  './refer1/C/16_0.853915_gray_15163_6077_step5_recog_3_C_0.977884_0.835029.jpg',
  './refer1/C/17_0.924102_gray_63_18_step5_recog_3_C_0.985215_0.910438.jpg',
  './refer1/C/18_0.920932_gray_1117_606_step5_recog_2_C_0.987482_0.909404.jpg',
  './refer1/C/19_0.628510_gray_1359_902_step5_recog_6_C_0.893228_0.561403.jpg',
  './refer1/C/1_0.891468_gray_6986_3177_step5_recog_1_C_0.970874_0.865503.jpg',
  './refer1/C/20_0.358278_gray_9943_4384_step5_recog_1_C_0.792129_0.283802.jpg',
  './refer1/C/2_0.896755_gray_5609_2251_step5_recog_3_C_0.980502_0.879271.jpg',
  './refer1/C/3_0.340735_gray_5982_3799_step5_recog_6_C_0.684540_0.233246.jpg',
  './refer1/C/4_0.835577_gray_19329_7749_step5_recog_4_C_0.974131_0.813962.jpg',
  './refer1/C/5_0.975549_gray_3540_1798_step5_recog_3_C_0.996676_0.972306.jpg',
  './refer1/C/6_0.921234_gray_5330_2409_step5_recog_3_C_0.983747_0.906261.jpg',
  './refer1/C/8_0.892025_gray_2947_1283_step5_recog_3_C_0.983551_0.877352.jpg',
  './refer1/C/9_0.926410_gray_5622_2677_step5_recog_1_C_0.975026_0.903274.jpg'],
 ['./refer1/D/10_0.794023_gray_1336_602_step5_recog_1_D_0.926533_0.735689.jpg',
  './refer1/D/11_0.913794_gray_232_105_step5_recog_1_D_0.970435_0.886777.jpg',
  './refer1/D/12_0.934375_gray_10130_3879_step5_recog_1_D_0.981041_0.916660.jpg',
  './refer1/D/13_0.810825_gray_5853_2069_step5_recog_1_D_0.951222_0.771275.jpg',
  './refer1/D/14_0.955417_gray_27350_11378_step5_recog_1_D_0.989847_0.945716.jpg',
  './refer1/D/151.jpg',
  './refer1/D/152.jpg',
  './refer1/D/153.jpg',
  './refer1/D/154.jpg',
  './refer1/D/155.jpg',
  './refer1/D/156.jpg',
  './refer1/D/157.jpg',
  './refer1/D/158.jpg',
  './refer1/D/159.jpg',
  './refer1/D/15_0.956209_gray_6523_2954_step5_recog_1_D_0.988946_0.945639.jpg',
  './refer1/D/160.jpg',
  './refer1/D/161.jpg',
  './refer1/D/162.jpg',
  './refer1/D/163.jpg',
  './refer1/D/164.jpg',
  './refer1/D/165.jpg',
  './refer1/D/166.jpg',
  './refer1/D/167.jpg',
  './refer1/D/168.jpg',
  './refer1/D/169.jpg',
  './refer1/D/16_0.952890_gray_281_120_step5_recog_1_D_0.987648_0.941120.jpg',
  './refer1/D/170.jpg',
  './refer1/D/171.jpg',
  './refer1/D/172.jpg',
  './refer1/D/173.jpg',
  './refer1/D/174.jpg',
  './refer1/D/175.jpg',
  './refer1/D/176.jpg',
  './refer1/D/177.jpg',
  './refer1/D/178.jpg',
  './refer1/D/179.jpg',
  './refer1/D/17_0.970875_gray_15593_6190_step5_recog_1_D_0.993989_0.965040.jpg',
  './refer1/D/180.jpg',
  './refer1/D/181.jpg',
  './refer1/D/182.jpg',
  './refer1/D/183.jpg',
  './refer1/D/184.jpg',
  './refer1/D/185.jpg',
  './refer1/D/186.jpg',
  './refer1/D/187.jpg',
  './refer1/D/188.jpg',
  './refer1/D/189.jpg',
  './refer1/D/18_0.420137_gray_2163_1490_step5_recog_1_D_0.432324_0.181635.jpg',
  './refer1/D/190.jpg',
  './refer1/D/191.jpg',
  './refer1/D/192.jpg',
  './refer1/D/193.jpg',
  './refer1/D/194.jpg',
  './refer1/D/195.jpg',
  './refer1/D/196.jpg',
  './refer1/D/197.jpg',
  './refer1/D/198.jpg',
  './refer1/D/199.jpg',
  './refer1/D/19_0.950583_gray_2990_1373_step5_recog_1_D_0.993956_0.944837.jpg',
  './refer1/D/1_0.990427_gray_29734_12488_step5_recog_1_D_0.998530_0.988971.jpg',
  './refer1/D/200.jpg',
  './refer1/D/20171103102426_6_329.jpg',
  './refer1/D/20171103102427_1_361.jpg',
  './refer1/D/20171103102429_4_402.jpg',
  './refer1/D/20171103102433_1_548.jpg',
  './refer1/D/20171103102448_1_1053.jpg',
  './refer1/D/20171103102449_0_1060.jpg',
  './refer1/D/20171103102449_5_1076.jpg',
  './refer1/D/20171103102500_2_1442.jpg',
  './refer1/D/20171103102513_4_1879.jpg',
  './refer1/D/20171103102515_5_1936.jpg',
  './refer1/D/20171103102517_1_2013.jpg',
  './refer1/D/20171103102521_3_2136.jpg',
  './refer1/D/20171103102521_5_2154.jpg',
  './refer1/D/20171103102523_1_2199.jpg',
  './refer1/D/20171103102523_1_2214.jpg',
  './refer1/D/20171103102524_0_2234.jpg',
  './refer1/D/20171103102524_2_2249.jpg',
  './refer1/D/20171103102524_3_2244.jpg',
  './refer1/D/20171103102525_4_2277.jpg',
  './refer1/D/20171103102525_5_2271.jpg',
  './refer1/D/20171103102525_6_2286.jpg',
  './refer1/D/20171103102526_0_2302.jpg',
  './refer1/D/20171103102526_1_2320.jpg',
  './refer1/D/20171103102526_1_2326.jpg',
  './refer1/D/20171103102526_3_2312.jpg',
  './refer1/D/20171103102526_6_2301.jpg',
  './refer1/D/20171103102527_1_2334.jpg',
  './refer1/D/20171103102527_1_2337.jpg',
  './refer1/D/20171103102527_1_2343.jpg',
  './refer1/D/20171103102527_2_2350.jpg',
  './refer1/D/20171103102528_1_2376.jpg',
  './refer1/D/20171103102528_1_2388.jpg',
  './refer1/D/20171103102528_1_2394.jpg',
  './refer1/D/20171103102528_6_2367.jpg',
  './refer1/D/20171103102529_1_2401.jpg',
  './refer1/D/20171103102529_2_2416.jpg',
  './refer1/D/20171103102529_2_2422.jpg',
  './refer1/D/20171103102530_1_2442.jpg',
  './refer1/D/20171103102530_1_2449.jpg',
  './refer1/D/20171103102530_1_2455.jpg',
  './refer1/D/20171103102530_2_2434.jpg',
  './refer1/D/20171103102548_0_3061.jpg',
  './refer1/D/20171103102553_3_3227.jpg',
  './refer1/D/20171103102554_2_3241.jpg',
  './refer1/D/20171103102554_4_3258.jpg',
  './refer1/D/20171103102554_5_3244.jpg',
  './refer1/D/20171103102556_2_3320.jpg',
  './refer1/D/20171103102556_2_3327.jpg',
  './refer1/D/20171103102556_3_3304.jpg',
  './refer1/D/20171103102556_3_3314.jpg',
  './refer1/D/20171103102558_3_3404.jpg',
  './refer1/D/20171103102559_4_3424.jpg',
  './refer1/D/20171103102600_1_3447.jpg',
  './refer1/D/20171103102601_4_3502.jpg',
  './refer1/D/20171103102609_3_3745.jpg',
  './refer1/D/20171103102609_3_3752.jpg',
  './refer1/D/20171103102609_3_3759.jpg',
  './refer1/D/20171103102610_1_3764.jpg',
  './refer1/D/20171103102610_3_3771.jpg',
  './refer1/D/20171103102617_2_4006.jpg',
  './refer1/D/20171103102617_2_4017.jpg',
  './refer1/D/20171103102623_0_4209.jpg',
  './refer1/D/20171103102624_3_4259.jpg',
  './refer1/D/20171103102636_2_4664.jpg',
  './refer1/D/20171103102641_1_4807.jpg',
  './refer1/D/20171103102642_0_4857.jpg',
  './refer1/D/20171103102649_5_5072.jpg',
  './refer1/D/20171103102650_2_5103.jpg',
  './refer1/D/20171103102653_4_5225.jpg',
  './refer1/D/20171103102655_2_5284.jpg',
  './refer1/D/20171103102700_0_5444.jpg',
  './refer1/D/20171103102708_0_5712.jpg',
  './refer1/D/20171103102708_1_5717.jpg',
  './refer1/D/20171103102708_3_5709.jpg',
  './refer1/D/20171103102708_3_5723.jpg',
  './refer1/D/20171103102708_6_5704.jpg',
  './refer1/D/20171103102709_4_5738.jpg',
  './refer1/D/20171103102709_4_5745.jpg',
  './refer1/D/20171103102710_3_5786.jpg',
  './refer1/D/20171103102710_4_5779.jpg',
  './refer1/D/20171103102711_1_5826.jpg',
  './refer1/D/20171103102711_4_5799.jpg',
  './refer1/D/20171103102711_4_5805.jpg',
  './refer1/D/20171103102711_5_5823.jpg',
  './refer1/D/20171103102712_3_5853.jpg',
  './refer1/D/20171103102712_4_5841.jpg',
  './refer1/D/20171103102712_4_5848.jpg',
  './refer1/D/20171103102713_1_5866.jpg',
  './refer1/D/20171103102713_1_5892.jpg',
  './refer1/D/20171103102713_2_5879.jpg',
  './refer1/D/20171103102713_4_5874.jpg',
  './refer1/D/20171103102713_4_5888.jpg',
  './refer1/D/20171103102723_0_6153.jpg',
  './refer1/D/20171103102729_1_6308.jpg',
  './refer1/D/20171103102734_3_6455.jpg',
  './refer1/D/20171103102738_0_6559.jpg',
  './refer1/D/20171103102748_4_6804.jpg',
  './refer1/D/20171103102752_2_6918.jpg',
  './refer1/D/20171103102823_5_7704.jpg',
  './refer1/D/20171103102826_3_7772.jpg',
  './refer1/D/20171103102829_5_7895.jpg',
  './refer1/D/20171103102830_0_7912.jpg',
  './refer1/D/20171103102832_4_7988.jpg',
  './refer1/D/20171103102833_1_7993.jpg',
  './refer1/D/20171103102834_5_8025.jpg',
  './refer1/D/20171103102836_0_8108.jpg',
  './refer1/D/20171103102836_2_8098.jpg',
  './refer1/D/20171103102837_4_8124.jpg',
  './refer1/D/20171103102840_3_8228.jpg',
  './refer1/D/20171103102841_3_8235.jpg',
  './refer1/D/20171103102846_3_8373.jpg',
  './refer1/D/20171103102855_4_8600.jpg',
  './refer1/D/20171103102857_0_8662.jpg',
  './refer1/D/20171103102905_1_8832.jpg',
  './refer1/D/20171103102908_4_8912.jpg',
  './refer1/D/20171103102914_2_9078.jpg',
  './refer1/D/20171103102922_0_9288.jpg',
  './refer1/D/20171103102931_2_9514.jpg',
  './refer1/D/20171103102931_2_9522.jpg',
  './refer1/D/20171103102931_3_9529.jpg',
  './refer1/D/20171103102931_7_9503.jpg',
  './refer1/D/20171103102939_3_9721.jpg',
  './refer1/D/20171103102940_5_9723.jpg',
  './refer1/D/20171103102953_5_10103.jpg',
  './refer1/D/20171103102958_5_10226.jpg',
  './refer1/D/20171103103000_0_10285.jpg',
  './refer1/D/20171103103002_7_10344.jpg',
  './refer1/D/20171103103003_2_10366.jpg',
  './refer1/D/20171103103003_2_10374.jpg',
  './refer1/D/20171103103003_4_10355.jpg',
  './refer1/D/20171103103004_3_10382.jpg',
  './refer1/D/20171103103004_3_10401.jpg',
  './refer1/D/20171103103005_1_10404.jpg',
  './refer1/D/20171103103005_4_10413.jpg',
  './refer1/D/20171103103006_1_10424.jpg',
  './refer1/D/20171103103006_3_10443.jpg',
  './refer1/D/20171103103006_4_10438.jpg',
  './refer1/D/20171103103007_2_10448.jpg',
  './refer1/D/20171103103007_3_10471.jpg',
  './refer1/D/20171103103007_4_10458.jpg',
  './refer1/D/20171103103007_4_10465.jpg',
  './refer1/D/20171103103010_5_10539.jpg',
  './refer1/D/20171103103017_4_10729.jpg',
  './refer1/D/20171103103045_5_11428.jpg',
  './refer1/D/20171103103051_3_11576.jpg',
  './refer1/D/20171103103114_2_12261.jpg',
  './refer1/D/20171103103115_3_12271.jpg',
  './refer1/D/20171103103121_0_12437.jpg',
  './refer1/D/20171103103121_1_12438.jpg',
  './refer1/D/20171103103121_1_12445.jpg',
  './refer1/D/20171103103129_5_12660.jpg',
  './refer1/D/20171103103132_5_12739.jpg',
  './refer1/D/20171103103133_1_12769.jpg',
  './refer1/D/20171103103134_2_12775.jpg',
  './refer1/D/20171103103135_3_12825.jpg',
  './refer1/D/20171103103148_2_13175.jpg',
  './refer1/D/20171103103151_6_13226.jpg',
  './refer1/D/20171103103156_2_13387.jpg',
  './refer1/D/20171103103156_5_13397.jpg',
  './refer1/D/20171103103300_3_15092.jpg',
  './refer1/D/20171103103302_2_15130.jpg',
  './refer1/D/20171103103326_1_15796.jpg',
  './refer1/D/20171103103330_1_15899.jpg',
  './refer1/D/20171103103330_2_15914.jpg',
  './refer1/D/20171103103330_4_15909.jpg',
  './refer1/D/20171103103334_1_16029.jpg',
  './refer1/D/20171103103334_2_16017.jpg',
  './refer1/D/20171103103338_6_16129.jpg',
  './refer1/D/20171103103348_6_16437.jpg',
  './refer1/D/20171103103349_2_16467.jpg',
  './refer1/D/20171103103349_3_16468.jpg',
  './refer1/D/20171103103354_4_16624.jpg',
  './refer1/D/20171103103356_4_16680.jpg',
  './refer1/D/20171103103357_2_16717.jpg',
  './refer1/D/20171103103358_7_16742.jpg',
  './refer1/D/20171103103402_3_16857.jpg',
  './refer1/D/20171103103402_5_16859.jpg',
  './refer1/D/20171103103408_2_17042.jpg',
  './refer1/D/20171103103410_3_17105.jpg',
  './refer1/D/20171103103410_6_17100.jpg',
  './refer1/D/20171103103419_2_17359.jpg',
  './refer1/D/20171103103420_4_17372.jpg',
  './refer1/D/20171103103438_2_17797.jpg',
  './refer1/D/20171103103438_2_17805.jpg',
  './refer1/D/20171103103438_3_17798.jpg',
  './refer1/D/20171103103439_1_17811.jpg',
  './refer1/D/20171103103439_2_17836.jpg',
  './refer1/D/20171103103439_3_17817.jpg',
  './refer1/D/20171103103439_3_17829.jpg',
  './refer1/D/20171103103440_2_17843.jpg',
  './refer1/D/20171103103440_4_17853.jpg',
  './refer1/D/20171103103447_2_18043.jpg',
  './refer1/D/20171103103456_6_18313.jpg',
  './refer1/D/20171103103457_3_18346.jpg',
  './refer1/D/20171103103504_1_18549.jpg',
  './refer1/D/20171103103505_3_18582.jpg',
  './refer1/D/20171103103505_3_18589.jpg',
  './refer1/D/20171103103509_2_18716.jpg',
  './refer1/D/20171103103509_3_18710.jpg',
  './refer1/D/20171103103515_5_18882.jpg',
  './refer1/D/20171103103516_2_18885.jpg',
  './refer1/D/20171103103534_3_19439.jpg',
  './refer1/D/20171103103535_1_19444.jpg',
  './refer1/D/20171103103541_1_19629.jpg',
  './refer1/D/20171103103542_5_19669.jpg',
  './refer1/D/20171103103546_3_19784.jpg',
  './refer1/D/20171103103548_2_19829.jpg',
  './refer1/D/20171103103604_6_20311.jpg',
  './refer1/D/20171103103605_1_20341.jpg',
  './refer1/D/20171103103605_2_20342.jpg',
  './refer1/D/20171103103605_2_20349.jpg',
  './refer1/D/20171103103605_3_20337.jpg',
  './refer1/D/20171103103606_3_20364.jpg',
  './refer1/D/20171103103609_2_20446.jpg',
  './refer1/D/20171103103613_4_20575.jpg',
  './refer1/D/20171103103617_5_20696.jpg',
  './refer1/D/20171103103620_5_20801.jpg',
  './refer1/D/20171103103621_5_20808.jpg',
  './refer1/D/20171103103624_5_20898.jpg',
  './refer1/D/20171103103627_3_21014.jpg',
  './refer1/D/20171103103635_6_21233.jpg',
  './refer1/D/20171103103641_3_21426.jpg',
  './refer1/D/20171103103642_2_21438.jpg',
  './refer1/D/20171103103642_3_21448.jpg',
  './refer1/D/20171103103643_2_21487.jpg',
  './refer1/D/20171103103644_3_21525.jpg',
  './refer1/D/20171103103648_3_21648.jpg',
  './refer1/D/20171103103650_5_21684.jpg',
  './refer1/D/20171103103652_3_21758.jpg',
  './refer1/D/20171103103654_4_21798.jpg',
  './refer1/D/20171103103657_6_21875.jpg',
  './refer1/D/20171103103700_6_21966.jpg',
  './refer1/D/20171103103705_5_22128.jpg',
  './refer1/D/20171103103718_2_22498.jpg',
  './refer1/D/20171103103718_3_22505.jpg',
  './refer1/D/20171103103726_2_22749.jpg',
  './refer1/D/20171103103726_4_22745.jpg',
  './refer1/D/20171103103733_6_22938.jpg',
  './refer1/D/20171103103734_6_22975.jpg',
  './refer1/D/20171103103735_5_23007.jpg',
  './refer1/D/20171103103738_0_23097.jpg',
  './refer1/D/20171103103740_5_23157.jpg',
  './refer1/D/20171103103748_2_23380.jpg',
  './refer1/D/20171103103748_2_23392.jpg',
  './refer1/D/20171103103748_3_23387.jpg',
  './refer1/D/20171103103749_2_23407.jpg',
  './refer1/D/20171103103753_2_23515.jpg',
  './refer1/D/20171103103754_1_23549.jpg',
  './refer1/D/20171103103757_4_23652.jpg',
  './refer1/D/20171103103801_4_23768.jpg',
  './refer1/D/20171103103802_6_23776.jpg',
  './refer1/D/20171103103808_5_23966.jpg',
  './refer1/D/20171103103811_6_24039.jpg',
  './refer1/D/20171103103815_7_24171.jpg',
  './refer1/D/20171103103817_5_24222.jpg',
  './refer1/D/20171103103818_6_24236.jpg',
  './refer1/D/20171103103822_3_24359.jpg',
  './refer1/D/20171103103826_2_24490.jpg',
  './refer1/D/20171103103827_2_24497.jpg',
  './refer1/D/20171103103827_3_24507.jpg',
  './refer1/D/20171103103827_3_24514.jpg',
  './refer1/D/20171103103828_2_24521.jpg',
  './refer1/D/20171103103828_2_24543.jpg',
  './refer1/D/20171103103828_3_24530.jpg',
  './refer1/D/20171103103828_3_24537.jpg',
  './refer1/D/20171103103829_1_24561.jpg',
  './refer1/D/20171103103829_2_24549.jpg',
  './refer1/D/20171103103829_3_24556.jpg',
  './refer1/D/20171103103832_0_24635.jpg',
  './refer1/D/20171103103833_4_24678.jpg',
  './refer1/D/20171103103835_3_24724.jpg',
  './refer1/D/20171103103836_6_24759.jpg',
  './refer1/D/20171103103838_3_24795.jpg',
  './refer1/D/20171103103840_3_24853.jpg',
  './refer1/D/20171103103843_6_24951.jpg',
  './refer1/D/20171103103850_4_25145.jpg',
  './refer1/D/20171103103902_2_25478.jpg',
  './refer1/D/20171103103902_3_25458.jpg',
  './refer1/D/20171103103903_2_25486.jpg',
  './refer1/D/20171103103903_3_25493.jpg',
  './refer1/D/20171103103911_0_25698.jpg',
  './refer1/D/20171103103911_0_25702.jpg',
  './refer1/D/20171103103914_4_25784.jpg',
  './refer1/D/20171103103916_3_25856.jpg',
  './refer1/D/20171103103926_4_26137.jpg',
  './refer1/D/20171103103926_5_26138.jpg',
  './refer1/D/20171103103926_5_26144.jpg',
  './refer1/D/20171103103934_5_26353.jpg',
  './refer1/D/20171103103939_3_26484.jpg',
  './refer1/D/20171103103943_1_26590.jpg',
  './refer1/D/20171103103959_2_27020.jpg',
  './refer1/D/20171103104002_3_27107.jpg',
  './refer1/D/20171103104009_2_27279.jpg',
  './refer1/D/20171103104009_4_27297.jpg',
  './refer1/D/20171103104010_1_27300.jpg',
  './refer1/D/20171103104010_1_27306.jpg',
  './refer1/D/20171103104010_1_27320.jpg',
  './refer1/D/20171103104010_2_27314.jpg',
  './refer1/D/20171103104010_2_27326.jpg',
  './refer1/D/20171103104010_3_27302.jpg',
  './refer1/D/20171103104010_3_27315.jpg',
  './refer1/D/20171103104011_1_27345.jpg',
  './refer1/D/20171103104011_2_27332.jpg',
  './refer1/D/20171103104011_2_27340.jpg',
  './refer1/D/20171103104012_1_27356.jpg',
  './refer1/D/20171103104012_1_27371.jpg',
  './refer1/D/20171103104013_1_27379.jpg',
  './refer1/D/20171103104013_2_27401.jpg',
  './refer1/D/20171103104013_3_27394.jpg',
  './refer1/D/20171103104013_4_27388.jpg',
  './refer1/D/20171103104014_3_27417.jpg',
  './refer1/D/20171103104014_3_27423.jpg',
  './refer1/D/20171103104014_3_27428.jpg',
  './refer1/D/20171103104014_4_27411.jpg',
  './refer1/D/20171103104015_2_27435.jpg',
  './refer1/D/20171103104015_2_27443.jpg',
  './refer1/D/20171103104015_4_27453.jpg',
  './refer1/D/20171103104016_3_27466.jpg',
  './refer1/D/20171103104016_4_27459.jpg',
  './refer1/D/20171103104016_4_27476.jpg',
  './refer1/D/20171103104017_3_27494.jpg',
  './refer1/D/20171103104017_3_27507.jpg',
  './refer1/D/20171103104017_4_27489.jpg',
  './refer1/D/20171103104017_4_27502.jpg',
  './refer1/D/20171103104018_2_27529.jpg',
  './refer1/D/20171103104018_2_27536.jpg',
  './refer1/D/20171103104018_4_27513.jpg',
  './refer1/D/20171103104018_4_27524.jpg',
  './refer1/D/20171103104019_2_27545.jpg',
  './refer1/D/20171103104019_2_27552.jpg',
  './refer1/D/20171103104019_4_27559.jpg',
  './refer1/D/20171103104020_1_27582.jpg',
  './refer1/D/20171103104020_2_27589.jpg',
  './refer1/D/20171103104020_4_27571.jpg',
  './refer1/D/20171103104020_5_27578.jpg',
  './refer1/D/20171103104021_2_27611.jpg',
  './refer1/D/20171103104021_2_27619.jpg',
  './refer1/D/20171103104021_4_27606.jpg',
  './refer1/D/20171103104022_2_27637.jpg',
  './refer1/D/20171103104022_2_27643.jpg',
  './refer1/D/20171103104022_2_27649.jpg',
  './refer1/D/20171103104023_2_27666.jpg',
  './refer1/D/20171103104023_3_27673.jpg',
  './refer1/D/20171103104023_5_27659.jpg',
  './refer1/D/20171103104023_6_27653.jpg',
  './refer1/D/20171103104024_2_27695.jpg',
  './refer1/D/20171103104024_3_27685.jpg',
  './refer1/D/20171103104024_3_27691.jpg',
  './refer1/D/20171103104025_2_27703.jpg',
  './refer1/D/20171103104025_2_27711.jpg',
  './refer1/D/20171103104025_2_27718.jpg',
  './refer1/D/20171103104025_4_27727.jpg',
  './refer1/D/20171103104026_2_27738.jpg',
  './refer1/D/20171103104026_2_27743.jpg',
  './refer1/D/20171103104026_3_27751.jpg',
  './refer1/D/20171103104026_4_27734.jpg',
  './refer1/D/20171103104027_2_27758.jpg',
  './refer1/D/20171103104027_2_27765.jpg',
  './refer1/D/20171103104027_2_27779.jpg',
  './refer1/D/20171103104027_3_27773.jpg',
  './refer1/D/20171103104028_2_27792.jpg',
  './refer1/D/20171103104028_3_27803.jpg',
  './refer1/D/20171103104029_1_27816.jpg',
  './refer1/D/20171103104029_2_27829.jpg',
  './refer1/D/20171103104029_3_27810.jpg',
  './refer1/D/20171103104029_3_27824.jpg',
  './refer1/D/20171103104029_4_27835.jpg',
  './refer1/D/20171103104030_1_27850.jpg',
  './refer1/D/20171103104030_2_27845.jpg',
  './refer1/D/20171103104030_2_27858.jpg',
  './refer1/D/20171103104030_3_27846.jpg',
  './refer1/D/20171103104030_4_27841.jpg',
  './refer1/D/20171103104031_1_27879.jpg',
  './refer1/D/20171103104031_1_27885.jpg',
  './refer1/D/20171103104031_2_27866.jpg',
  './refer1/D/20171103104031_2_27873.jpg',
  './refer1/D/20171103104032_1_27893.jpg',
  './refer1/D/20171103104032_1_27899.jpg',
  './refer1/D/20171103104033_2_27929.jpg',
  './refer1/D/20171103104042_4_28158.jpg',
  './refer1/D/20171103104101_3_28671.jpg',
  './refer1/D/20171103104114_5_29015.jpg',
  './refer1/D/20171103104123_2_29299.jpg',
  './refer1/D/20171103104123_2_29305.jpg',
  './refer1/D/20171103104133_5_29583.jpg',
  './refer1/D/20171103104135_6_29649.jpg',
  './refer1/D/20171103104136_4_29682.jpg',
  './refer1/D/20171103104139_5_29754.jpg',
  './refer1/D/20171103104151_4_30087.jpg',
  './refer1/D/20171103104157_4_30240.jpg',
  './refer1/D/20171103104214_1_30703.jpg',
  './refer1/D/20171103104215_3_30741.jpg',
  './refer1/D/20171103104221_2_30899.jpg',
  './refer1/D/20171103104226_3_31022.jpg',
  './refer1/D/20171103104227_6_31044.jpg',
  './refer1/D/20171103104230_1_31142.jpg',
  './refer1/D/20171103104238_4_31373.jpg',
  './refer1/D/20171103104246_6_31637.jpg',
  './refer1/D/20171103104256_0_31903.jpg',
  './refer1/D/20171103104327_2_32741.jpg',
  './refer1/D/20171103104329_3_32775.jpg',
  './refer1/D/20171103104340_0_33097.jpg',
  './refer1/D/20171103104341_0_33132.jpg',
  './refer1/D/20171103104352_3_33397.jpg',
  './refer1/D/20171103104403_0_33704.jpg',
  './refer1/D/20171103104403_5_33727.jpg',
  './refer1/D/20171103104410_2_33907.jpg',
  './refer1/D/20171103104422_1_34221.jpg',
  './refer1/D/20171103104431_6_34492.jpg',
  './refer1/D/20171103104437_6_34679.jpg',
  './refer1/D/20171103104438_5_34699.jpg',
  './refer1/D/20171103104442_5_34831.jpg',
  './refer1/D/20171103104451_6_35054.jpg',
  './refer1/D/20171103104510_4_35585.jpg',
  './refer1/D/20171103104513_0_35673.jpg',
  './refer1/D/20171103104528_1_36106.jpg',
  './refer1/D/20171103104534_2_36263.jpg',
  './refer1/D/20171103104540_0_36421.jpg',
  './refer1/D/20171103104554_5_36810.jpg',
  './refer1/D/20171103104555_2_36840.jpg',
  './refer1/D/20171103104607_5_37208.jpg',
  './refer1/D/20171103104623_5_37657.jpg',
  './refer1/D/20171103104639_3_38113.jpg',
  './refer1/D/20171103104650_2_38397.jpg',
  './refer1/D/20171103104651_6_38425.jpg',
  './refer1/D/20171103104654_2_38512.jpg',
  './refer1/D/20171103104659_2_38646.jpg',
  './refer1/D/20171103104700_5_38665.jpg',
  './refer1/D/20171103104700_6_38673.jpg',
  './refer1/D/20171103104710_3_38929.jpg',
  './refer1/D/20171103104714_2_38998.jpg',
  './refer1/D/20171103104714_4_39007.jpg',
  './refer1/D/20171103104723_1_39231.jpg',
  './refer1/D/20171103104724_2_39255.jpg',
  './refer1/D/20171103104726_0_39325.jpg',
  './refer1/D/20171103104728_2_39366.jpg',
  './refer1/D/20171103104736_1_39582.jpg',
  './refer1/D/20171103104738_3_39623.jpg',
  './refer1/D/20171103104744_2_39789.jpg',
  './refer1/D/20171103104744_2_39796.jpg',
  './refer1/D/20171103104746_1_39832.jpg',
  './refer1/D/20171103104749_0_39914.jpg',
  './refer1/D/20171103104749_2_39908.jpg',
  './refer1/D/20171103104751_1_39969.jpg',
  './refer1/D/20171103104752_1_40002.jpg',
  './refer1/D/20171103104756_2_40119.jpg',
  './refer1/D/20171103104757_3_40144.jpg',
  './refer1/D/20171103104757_4_40138.jpg',
  './refer1/D/20171103104806_1_40419.jpg',
  './refer1/D/20171103104807_2_40433.jpg',
  './refer1/D/20171103104810_1_40500.jpg',
  './refer1/D/20171103104813_1_40582.jpg',
  './refer1/D/20171103104813_2_40587.jpg',
  './refer1/D/20171103104813_3_40594.jpg',
  './refer1/D/20171103104814_1_40606.jpg',
  './refer1/D/20171103104821_4_40794.jpg',
  './refer1/D/20171103104822_2_40801.jpg',
  './refer1/D/20171103104827_2_40958.jpg',
  './refer1/D/20171103104827_5_40954.jpg',
  './refer1/D/20171103104828_3_40964.jpg',
  './refer1/D/20171103104833_1_41123.jpg',
  './refer1/D/20171103104833_1_41148.jpg',
  './refer1/D/20171103104833_2_41135.jpg',
  './refer1/D/20171103104833_4_41132.jpg',
  './refer1/D/20171103104834_1_41166.jpg',
  './refer1/D/20171103104834_1_41177.jpg',
  './refer1/D/20171103104834_3_41175.jpg',
  './refer1/D/20171103104834_5_41164.jpg',
  './refer1/D/20171103104835_0_41204.jpg',
  './refer1/D/20171103104835_1_41205.jpg',
  './refer1/D/20171103104835_4_41213.jpg',
  './refer1/D/20171103104835_5_41193.jpg',
  './refer1/D/20171103104836_1_41215.jpg',
  './refer1/D/20171103104843_0_41418.jpg',
  './refer1/D/20171103104843_0_41423.jpg',
  './refer1/D/20171103104844_2_41443.jpg',
  './refer1/D/20171103104847_2_41529.jpg',
  './refer1/D/20171103104847_2_41540.jpg',
  './refer1/D/20171103104847_4_41535.jpg',
  './refer1/D/20171103104858_1_41843.jpg',
  './refer1/D/20171103104858_6_41826.jpg',
  './refer1/D/20171103104859_0_41860.jpg',
  './refer1/D/20171103104859_3_41856.jpg',
  './refer1/D/20171103104903_4_41939.jpg',
  './refer1/D/20171103104904_5_41975.jpg',
  './refer1/D/20171103104906_2_42010.jpg',
  './refer1/D/20171103105026_5_106.jpg',
  './refer1/D/20171103105028_2_145.jpg',
  './refer1/D/20171103105031_3_258.jpg',
  './refer1/D/20171103105035_1_369.jpg',
  './refer1/D/20171103105035_4_379.jpg',
  './refer1/D/20171103105036_4_394.jpg',
  './refer1/D/20171103105036_5_388.jpg',
  './refer1/D/20171103105040_2_500.jpg',
  './refer1/D/20171103105046_6_703.jpg',
  './refer1/D/20171103105047_1_728.jpg',
  './refer1/D/20171103105048_2_754.jpg',
  './refer1/D/20171103105049_1_787.jpg',
  './refer1/D/20171103105050_1_812.jpg',
  './refer1/D/20171103105052_2_864.jpg',
  './refer1/D/20171103105052_5_867.jpg',
  './refer1/D/20171103105055_2_973.jpg',
  './refer1/D/20171103105056_2_1005.jpg',
  './refer1/D/20171103105057_2_1017.jpg',
  './refer1/D/20171103105058_4_1059.jpg',
  './refer1/D/20171103105108_2_1368.jpg',
  './refer1/D/20171103105110_1_1423.jpg',
  './refer1/D/20171103105111_1_1447.jpg',
  './refer1/D/20171103105117_3_1636.jpg',
  './refer1/D/20171103105121_1_1757.jpg',
  './refer1/D/20171103105122_3_1804.jpg',
  './refer1/D/20171103105123_5_1818.jpg',
  './refer1/D/20171103105128_2_1967.jpg',
  './refer1/D/20171103105128_3_1968.jpg',
  './refer1/D/20171103105128_3_1987.jpg',
  './refer1/D/20171103105128_4_1975.jpg',
  './refer1/D/20171103105128_4_1983.jpg',
  './refer1/D/20171103105139_3_2313.jpg',
  './refer1/D/20171103105140_2_2319.jpg',
  './refer1/D/20171103105140_5_2331.jpg',
  './refer1/D/20171103105152_4_2695.jpg',
  './refer1/D/20171103105204_4_3047.jpg',
  './refer1/D/20171103105213_2_3314.jpg',
  './refer1/D/20171103105213_2_3320.jpg',
  './refer1/D/20171103105213_3_3315.jpg',
  './refer1/D/20171103105213_4_3329.jpg',
  './refer1/D/20171103105213_4_3336.jpg',
  './refer1/D/20171103105215_2_3378.jpg',
  './refer1/D/20171103105220_3_3532.jpg',
  './refer1/D/20171103105225_3_3677.jpg',
  './refer1/D/20171103105229_2_3819.jpg',
  './refer1/D/20171103105231_3_3862.jpg',
  './refer1/D/20_0.697351_gray_6010_2675_step5_recog_1_D_0.891553_0.621726.jpg',
  './refer1/D/21_0.903165_gray_10264_3871_step5_recog_1_D_0.968851_0.875032.jpg',
  './refer1/D/22_0.978491_gray_23085_9503_step5_recog_1_D_0.997064_0.975618.jpg',
  './refer1/D/23_0.912059_gray_11146_4286_step5_recog_1_D_0.966033_0.881079.jpg',
  './refer1/D/24_0.692143_gray_12005_4673_step5_recog_1_D_0.878138_0.607797.jpg',
  './refer1/D/25_0.982739_gray_30411_12805_step5_recog_1_D_0.996795_0.979589.jpg',
  './refer1/D/26_0.941710_gray_3168_1391_step5_recog_3_D_0.993022_0.935139.jpg',
  './refer1/D/27_0.979940_gray_36248_15284_step5_recog_1_D_0.995287_0.975321.jpg',
  './refer1/D/28_0.980665_gray_11327_4607_step5_recog_1_D_0.996376_0.977111.jpg',
  './refer1/D/29_0.986344_gray_13506_5355_step5_recog_1_D_0.997460_0.983839.jpg',
  './refer1/D/2_0.986183_gray_592_247_step5_recog_1_D_0.996808_0.983035.jpg',
  './refer1/D/30_0.879873_gray_11265_4796_step5_recog_1_D_0.945422_0.831851.jpg',
  './refer1/D/31_0.969809_gray_4592_2047_step5_recog_1_D_0.991632_0.961694.jpg',
  './refer1/D/32_0.923134_gray_6933_3052_step5_recog_1_D_0.983425_0.907833.jpg',
  './refer1/D/33_0.381846_gray_7060_2736_step5_recog_1_D_0.561525_0.214416.jpg',
  './refer1/D/34_0.909889_gray_174_104_step5_recog_1_D_0.966559_0.879462.jpg',
  './refer1/D/35_0.923922_gray_1908_987_step5_recog_1_D_0.989170_0.913916.jpg',
  './refer1/D/36_0.916124_gray_38798_16240_step5_recog_1_D_0.974259_0.892542.jpg',
  './refer1/D/37_0.967361_gray_29888_12562_step5_recog_1_D_0.994855_0.962384.jpg',
  './refer1/D/38_0.903477_gray_1917_991_step5_recog_1_D_0.983265_0.888357.jpg',
  './refer1/D/39_0.974962_gray_6903_3198_step5_recog_1_D_0.994902_0.969991.jpg',
  './refer1/D/3_0.830467_gray_5814_2629_step5_recog_6_D_0.937601_0.778646.jpg',
  './refer1/D/40_0.532160_gray_6161_2186_step5_recog_1_D_0.564061_0.300171.jpg',
  './refer1/D/41_0.695483_gray_3854_1511_step5_recog_1_D_0.853651_0.593700.jpg',
  './refer1/D/42_0.939370_gray_6264_2975_step5_recog_1_D_0.970910_0.912044.jpg',
  './refer1/D/43_0.841782_gray_2022_1047_step5_recog_1_D_0.958897_0.807182.jpg',
  './refer1/D/44_0.648094_gray_14370_5694_step5_recog_1_D_0.763704_0.494952.jpg',
  './refer1/D/45_0.940897_gray_1527_686_step5_recog_1_D_0.989099_0.930641.jpg',
  './refer1/D/46_0.928058_gray_8343_3577_step5_recog_1_D_0.977387_0.907072.jpg',
  './refer1/D/47_0.942843_gray_7529_3384_step5_recog_1_D_0.986026_0.929667.jpg',
  './refer1/D/48_0.896723_gray_15949_6250_step5_recog_2_D_0.980161_0.878933.jpg',
  './refer1/D/49_0.678103_gray_1627_843_step5_recog_1_D_0.779130_0.528330.jpg',
  './refer1/D/4_0.970187_gray_5831_2249_step5_recog_1_D_0.995536_0.965856.jpg',
  './refer1/D/50_0.976641_gray_10099_3894_step5_recog_1_D_0.995264_0.972016.jpg',
  './refer1/D/5_0.922443_gray_7156_2783_step5_recog_1_D_0.977553_0.901737.jpg',
  './refer1/D/6_0.957171_gray_13405_6012_step5_recog_1_D_0.991278_0.948823.jpg',
  './refer1/D/7_0.944314_gray_9381_3595_step5_recog_1_D_0.987869_0.932858.jpg',
  './refer1/D/8_0.640198_gray_15705_6232_step5_recog_1_D_0.865321_0.553977.jpg',
  './refer1/D/9_0.927927_gray_866_595_step5_recog_1_D_0.987315_0.916156.jpg',
  './refer1/D/z1301.jpg',
  './refer1/D/z1302.jpg',
  './refer1/D/z1303.jpg',
  './refer1/D/z1304.jpg',
  './refer1/D/z1305.jpg',
  './refer1/D/z1306.jpg',
  './refer1/D/z1307.jpg',
  './refer1/D/z1308.jpg',
  './refer1/D/z1309.jpg',
  './refer1/D/z1310.jpg',
  './refer1/D/z1311.jpg',
  './refer1/D/z1312.jpg',
  './refer1/D/z1313.jpg',
  './refer1/D/z1314.jpg',
  './refer1/D/z1315.jpg',
  './refer1/D/z1316.jpg',
  './refer1/D/z1317.jpg',
  './refer1/D/z1318.jpg',
  './refer1/D/z1319.jpg',
  './refer1/D/z1320.jpg',
  './refer1/D/z1321.jpg',
  './refer1/D/z1322.jpg',
  './refer1/D/z1323.jpg',
  './refer1/D/z1324.jpg',
  './refer1/D/z1325.jpg',
  './refer1/D/z1326.jpg',
  './refer1/D/z1327.jpg',
  './refer1/D/z1328.jpg',
  './refer1/D/z1329.jpg',
  './refer1/D/z1330.jpg',
  './refer1/D/z1331.jpg',
  './refer1/D/z1332.jpg',
  './refer1/D/z1333.jpg',
  './refer1/D/z1334.jpg',
  './refer1/D/z1335.jpg',
  './refer1/D/z1336.jpg',
  './refer1/D/z1337.jpg',
  './refer1/D/z1338.jpg',
  './refer1/D/z1339.jpg',
  './refer1/D/z1340.jpg',
  './refer1/D/z1341.jpg',
  './refer1/D/z1342.jpg',
  './refer1/D/z1343.jpg',
  './refer1/D/z1344.jpg',
  './refer1/D/z1345.jpg',
  './refer1/D/z1346.jpg',
  './refer1/D/z1347.jpg',
  './refer1/D/z1348.jpg',
  './refer1/D/z1349.jpg',
  './refer1/D/z1350.jpg',
  './refer1/D/z1351.jpg',
  './refer1/D/z1352.jpg',
  './refer1/D/z1353.jpg',
  './refer1/D/z1354.jpg',
  './refer1/D/z1355.jpg',
  './refer1/D/z1356.jpg',
  './refer1/D/z1357.jpg',
  './refer1/D/z1358.jpg',
  './refer1/D/z1359.jpg',
  './refer1/D/z1360.jpg',
  './refer1/D/z1361.jpg',
  './refer1/D/z1362.jpg',
  './refer1/D/z1363.jpg',
  './refer1/D/z1364.jpg',
  './refer1/D/z1365.jpg',
  './refer1/D/z1366.jpg',
  './refer1/D/z1367.jpg',
  './refer1/D/z1368.jpg',
  './refer1/D/z1369.jpg',
  './refer1/D/z1370.jpg',
  './refer1/D/z1371.jpg',
  './refer1/D/z1372.jpg',
  './refer1/D/z1373.jpg',
  './refer1/D/z1374.jpg',
  './refer1/D/z1375.jpg',
  './refer1/D/z1376.jpg',
  './refer1/D/z1377.jpg',
  './refer1/D/z1378.jpg',
  './refer1/D/z1379.jpg',
  './refer1/D/z1380.jpg',
  './refer1/D/z1381.jpg',
  './refer1/D/z1382.jpg',
  './refer1/D/z1383.jpg',
  './refer1/D/z1384.jpg',
  './refer1/D/z1385.jpg',
  './refer1/D/z1386.jpg',
  './refer1/D/z1387.jpg',
  './refer1/D/z1388.jpg',
  './refer1/D/z1389.jpg',
  './refer1/D/z1390.jpg',
  './refer1/D/z1391.jpg',
  './refer1/D/z1392.jpg',
  './refer1/D/z1393.jpg',
  './refer1/D/z1394.jpg',
  './refer1/D/z1395.jpg',
  './refer1/D/z1396.jpg',
  './refer1/D/z1397.jpg',
  './refer1/D/z1398.jpg',
  './refer1/D/z1399.jpg',
  './refer1/D/z1400.jpg'],
 ['./refer1/E/10_0.886490_gray_14629_5801_step5_recog_2_E_0.987401_0.875321.jpg',
  './refer1/E/11_0.789070_gray_12611_4819_step5_recog_3_E_0.942441_0.743652.jpg',
  './refer1/E/12_0.881698_gray_13373_5255_step5_recog_6_E_0.985145_0.868600.jpg',
  './refer1/E/13_0.815185_gray_1547_487_step5_recog_3_E_0.967580_0.788756.jpg',
  './refer1/E/15_0.659613_gray_3461_1535_step5_recog_3_E_0.953489_0.628934.jpg',
  './refer1/E/16_0.949395_gray_35929_15182_step5_recog_1_E_0.991142_0.940985.jpg',
  './refer1/E/17_0.933791_gray_16312_7072_step5_recog_3_E_0.980195_0.915298.jpg',
  './refer1/E/18_0.854574_gray_3717_2116_step5_recog_3_E_0.980084_0.837555.jpg',
  './refer1/E/19_0.945612_gray_16840_6605_step5_recog_2_E_0.988825_0.935045.jpg',
  './refer1/E/1_0.974145_gray_5896_2441_step5_recog_4_E_0.996617_0.970850.jpg',
  './refer1/E/20_0.892841_gray_310_128_step5_recog_2_E_0.983799_0.878376.jpg',
  './refer1/E/2_0.893692_gray_6780_2997_step5_recog_3_E_0.976021_0.872262.jpg',
  './refer1/E/3_0.955488_gray_33862_14288_step5_recog_2_E_0.995610_0.951294.jpg',
  './refer1/E/4_0.926453_gray_1405_637_step5_recog_4_E_0.992576_0.919574.jpg',
  './refer1/E/5_0.925013_gray_37046_15603_step5_recog_3_E_0.990131_0.915884.jpg',
  './refer1/E/6_0.897940_gray_6372_2358_step5_recog_3_E_0.987198_0.886445.jpg',
  './refer1/E/8_0.890014_gray_13377_5257_step5_recog_6_E_0.984593_0.876302.jpg',
  './refer1/E/9_0.895083_gray_350_197_step5_recog_2_E_0.987374_0.883781.jpg'],
 ['./refer1/F/10_0.851044_gray_130_57_step5_recog_3_F_0.982555_0.836198.jpg',
  './refer1/F/11_0.873812_gray_83_26_step5_recog_2_F_0.983984_0.859816.jpg',
  './refer1/F/12_0.815744_gray_6448_2505_step5_recog_3_F_0.970047_0.791310.jpg',
  './refer1/F/13_0.781585_gray_6794_2643_step5_recog_2_F_0.942768_0.736854.jpg',
  './refer1/F/1_0.866793_gray_8192_3767_step5_recog_4_F_0.980805_0.850155.jpg',
  './refer1/F/2_0.854838_gray_12512_4900_step5_recog_2_F_0.983237_0.840508.jpg',
  './refer1/F/3_0.817124_gray_3743_1471_step5_recog_3_F_0.971530_0.793860.jpg',
  './refer1/F/4_0.983986_gray_24046_9922_step5_recog_3_F_0.996407_0.980451.jpg',
  './refer1/F/5_0.933207_gray_704_463_step5_recog_2_F_0.986902_0.920984.jpg',
  './refer1/F/6_0.951605_gray_3336_1697_step5_recog_1_F_0.991509_0.943525.jpg',
  './refer1/F/8_0.955655_gray_5991_3806_step5_recog_2_F_0.994523_0.950420.jpg',
  './refer1/F/9_0.906931_gray_844_492_step5_recog_3_F_0.986327_0.894531.jpg'],
 ['./refer1/G/10_0.944029_gray_18979_7586_step5_recog_3_G_0.991052_0.935582.jpg',
  './refer1/G/11_0.883773_gray_1178_755_step5_recog_3_G_0.985296_0.870778.jpg',
  './refer1/G/12_0.665938_gray_15560_6267_step5_recog_2_G_0.914409_0.608939.jpg',
  './refer1/G/13_0.935799_gray_3518_1637_step5_recog_3_G_0.987343_0.923954.jpg',
  './refer1/G/15_0.952597_gray_12308_4809_step5_recog_2_G_0.993481_0.946388.jpg',
  './refer1/G/16_0.968342_gray_12629_5668_step5_recog_3_G_0.996011_0.964479.jpg',
  './refer1/G/17_0.883669_gray_10899_4685_step5_recog_3_G_0.982569_0.868266.jpg',
  './refer1/G/18_0.946602_gray_4271_1911_step5_recog_2_G_0.991786_0.938827.jpg',
  './refer1/G/19_0.905835_gray_13402_5289_step5_recog_2_G_0.987106_0.894155.jpg',
  './refer1/G/1_0.798673_gray_4276_1915_step5_recog_2_G_0.973162_0.777239.jpg',
  './refer1/G/20_0.838199_gray_4054_2325_step5_recog_2_G_0.974878_0.817142.jpg',
  './refer1/G/22_0.927128_gray_4155_1858_step5_recog_2_G_0.991515_0.919261.jpg',
  './refer1/G/23_0.983365_gray_32081_13518_step5_recog_2_G_0.997450_0.980857.jpg',
  './refer1/G/24_0.905113_gray_5815_2185_step5_recog_1_G_0.959386_0.868353.jpg',
  './refer1/G/25_0.886246_gray_2430_1224_step5_recog_3_G_0.975678_0.864692.jpg',
  './refer1/G/26_0.897968_gray_19920_7990_step5_recog_3_G_0.983275_0.882950.jpg',
  './refer1/G/27_0.931285_gray_1979_794_step5_recog_2_G_0.970443_0.903759.jpg',
  './refer1/G/2_0.947031_gray_5203_2178_step5_recog_4_G_0.974805_0.923171.jpg',
  './refer1/G/3_0.830598_gray_1579_594_step5_recog_4_G_0.964932_0.801471.jpg',
  './refer1/G/4_0.875993_gray_7976_3479_step5_recog_2_G_0.983248_0.861318.jpg',
  './refer1/G/5_0.897359_gray_11070_4342_step5_recog_3_G_0.986931_0.885631.jpg',
  './refer1/G/6_0.914550_gray_13918_5334_step5_recog_1_G_0.986735_0.902419.jpg',
  './refer1/G/8_0.948226_gray_22053_9090_step5_recog_6_G_0.980042_0.929302.jpg',
  './refer1/G/9_0.924794_gray_2344_1264_step5_recog_3_G_0.988670_0.914316.jpg'],
 ['./refer1/H/10_0.728032_gray_1548_709_step5_recog_3_H_0.913007_0.664698.jpg',
  './refer1/H/11_0.981290_gray_20206_8307_step5_recog_2_H_0.997931_0.979260.jpg',
  './refer1/H/12_0.958136_gray_16518_6470_step5_recog_4_H_0.995365_0.953695.jpg',
  './refer1/H/13_0.795436_gray_30323_12773_step5_recog_2_H_0.894604_0.711600.jpg',
  './refer1/H/1_0.925625_gray_28257_11787_step5_recog_2_H_0.989044_0.915484.jpg',
  './refer1/H/2_0.945540_gray_1954_889_step5_recog_6_H_0.988771_0.934923.jpg',
  './refer1/H/3_0.850711_gray_6992_2716_step5_recog_3_H_0.969035_0.824369.jpg',
  './refer1/H/4_0.846023_gray_7830_2834_step5_recog_3_H_0.965580_0.816903.jpg',
  './refer1/H/5_0.973555_gray_38295_16057_step5_recog_6_H_0.996329_0.969981.jpg',
  './refer1/H/6_0.961194_gray_5429_2407_step5_recog_3_H_0.993729_0.955167.jpg',
  './refer1/H/8_0.959070_gray_18149_7293_step5_recog_12_H_0.992038_0.951433.jpg',
  './refer1/H/9_0.988228_gray_2188_1131_step5_recog_6_H_0.998458_0.986704.jpg'],
 ['./refer1/J/10_0.842095_gray_2806_889_step5_recog_2_J_0.966467_0.813857.jpg',
  './refer1/J/11_0.950181_gray_1153_480_step5_recog_2_J_0.992907_0.943442.jpg',
  './refer1/J/12_0.846055_gray_400_170_step5_recog_3_J_0.966253_0.817503.jpg',
  './refer1/J/13_0.924950_gray_11040_4515_step5_recog_4_J_0.990340_0.916015.jpg',
  './refer1/J/1_0.915180_gray_15900_6935_step5_recog_4_J_0.990085_0.906105.jpg',
  './refer1/J/2_0.947886_gray_1693_520_step5_recog_2_J_0.990567_0.938945.jpg',
  './refer1/J/3_0.877661_gray_10486_4043_step5_recog_3_J_0.981789_0.861678.jpg',
  './refer1/J/4_0.943077_gray_4873_2880_step5_recog_2_J_0.992236_0.935756.jpg',
  './refer1/J/5_0.923102_gray_1652_747_step5_recog_3_J_0.987479_0.911544.jpg',
  './refer1/J/6_0.940680_gray_3470_1590_step5_recog_4_J_0.991191_0.932394.jpg',
  './refer1/J/8_0.867309_gray_3448_1347_step5_recog_2_J_0.965427_0.837323.jpg',
  './refer1/J/9_0.936279_gray_17208_6931_step5_recog_2_J_0.987532_0.924605.jpg'],
 ['./refer1/K/10_0.981503_gray_12117_4842_step5_recog_4_K_0.997813_0.979356.jpg',
  './refer1/K/11_0.829219_gray_5332_2029_step5_recog_2_K_0.957339_0.793844.jpg',
  './refer1/K/12_0.770006_gray_3061_1340_step5_recog_6_K_0.953831_0.734456.jpg',
  './refer1/K/13_0.908245_gray_1880_1176_step5_recog_2_K_0.984029_0.893740.jpg',
  './refer1/K/1_0.959089_gray_4124_1731_step5_recog_4_K_0.992053_0.951468.jpg',
  './refer1/K/2_0.790826_gray_2266_1145_step5_recog_6_K_0.943093_0.745822.jpg',
  './refer1/K/3_0.941735_gray_9436_4091_step5_recog_3_K_0.989423_0.931775.jpg',
  './refer1/K/4_0.902284_gray_19130_7575_step5_recog_3_K_0.981675_0.885750.jpg',
  './refer1/K/5_0.915611_gray_4940_1871_step5_recog_3_K_0.987154_0.903849.jpg',
  './refer1/K/6_0.497471_gray_85_60_step5_recog_2_K_0.489183_0.243354.jpg',
  './refer1/K/8_0.733581_gray_708_333_step5_recog_6_K_0.916848_0.672582.jpg',
  './refer1/K/9_0.696633_gray_604_204_step5_recog_2_K_0.900824_0.627544.jpg'],
 ['./refer1/L/10_0.954300_gray_4233_2122_step5_recog_3_L_0.992232_0.946887.jpg',
  './refer1/L/11_0.919792_gray_3340_1063_step5_recog_2_L_0.988717_0.909414.jpg',
  './refer1/L/12_0.846818_gray_13207_5178_step5_recog_3_L_0.977036_0.827371.jpg',
  './refer1/L/13_0.796821_gray_4621_2765_step5_recog_2_L_0.972431_0.774854.jpg',
  './refer1/L/1_0.833504_gray_12598_4940_step5_recog_3_L_0.968492_0.807242.jpg',
  './refer1/L/2_0.792530_gray_11783_4976_step5_recog_2_L_0.966019_0.765599.jpg',
  './refer1/L/3_0.812870_gray_167_70_step5_recog_2_L_0.964427_0.783954.jpg',
  './refer1/L/4_0.962685_gray_3952_1655_step5_recog_3_L_0.993771_0.956689.jpg',
  './refer1/L/5_0.887643_gray_4801_3216_step5_recog_3_L_0.981774_0.871465.jpg',
  './refer1/L/6_0.796734_gray_4426_1867_step5_recog_3_L_0.932055_0.742600.jpg',
  './refer1/L/8_0.961952_gray_7221_4620_step5_recog_2_L_0.993554_0.955751.jpg',
  './refer1/L/9_0.897480_gray_1854_845_step5_recog_3_L_0.981989_0.881316.jpg'],
 ['./refer1/M/10_0.858546_gray_746_513_step5_recog_2_M_0.958354_0.822791.jpg',
  './refer1/M/11_0.943777_gray_15158_6026_step5_recog_13_M_0.986516_0.931051.jpg',
  './refer1/M/12_0.976178_gray_8690_5506_step5_recog_12_M_0.993645_0.969975.jpg',
  './refer1/M/13_0.977104_gray_18693_7459_step5_recog_3_M_0.995747_0.972948.jpg',
  './refer1/M/1_0.803179_gray_18027_7580_step5_recog_2_M_0.961369_0.772152.jpg',
  './refer1/M/2_0.838617_gray_4721_1786_step5_recog_3_M_0.946941_0.794121.jpg',
  './refer1/M/3_0.955369_gray_2417_769_step5_recog_3_M_0.991800_0.947535.jpg',
  './refer1/M/4_0.965726_gray_33360_14050_step5_recog_6_M_0.990720_0.956764.jpg',
  './refer1/M/5_0.941696_gray_9946_4385_step5_recog_3_M_0.988688_0.931043.jpg',
  './refer1/M/6_0.857926_gray_16688_6536_step5_recog_2_M_0.966914_0.829540.jpg',
  './refer1/M/8_0.971788_gray_12721_5069_step5_recog_3_M_0.996238_0.968132.jpg',
  './refer1/M/9_0.962501_gray_22097_9107_step5_recog_3_M_0.992555_0.955335.jpg'],
 ['./refer1/N/10_0.886353_gray_7780_2871_step5_recog_6_N_0.986105_0.874037.jpg',
  './refer1/N/11_0.946000_gray_5518_3493_step5_recog_3_N_0.993117_0.939489.jpg',
  './refer1/N/12_0.916715_gray_12645_4965_step5_recog_3_N_0.989980_0.907530.jpg',
  './refer1/N/13_0.892586_gray_12037_4719_step5_recog_6_N_0.987296_0.881247.jpg',
  './refer1/N/1_0.816872_gray_6208_2439_step5_recog_3_N_0.951028_0.776868.jpg',
  './refer1/N/2_0.808953_gray_7900_3454_step5_recog_6_N_0.968417_0.783404.jpg',
  './refer1/N/3_0.755272_gray_7423_2696_step5_recog_3_N_0.937340_0.707947.jpg',
  './refer1/N/4_0.968542_gray_4271_2137_step5_recog_2_N_0.997310_0.965937.jpg',
  './refer1/N/5_0.812245_gray_1342_605_step5_recog_3_N_0.964013_0.783015.jpg',
  './refer1/N/6_0.925362_gray_7054_2935_step5_recog_3_N_0.982919_0.909557.jpg',
  './refer1/N/8_0.971920_gray_2477_1292_step5_recog_3_N_0.994071_0.966158.jpg',
  './refer1/N/9_0.940776_gray_2008_1259_step5_recog_2_N_0.990258_0.931611.jpg'],
 ['./refer1/P/10_0.971280_gray_15795_6907_step5_recog_6_P_0.996007_0.967402.jpg',
  './refer1/P/11_0.979276_gray_1009_528_step5_recog_3_P_0.996434_0.975784.jpg',
  './refer1/P/12_0.883852_gray_1884_972_step5_recog_2_P_0.978762_0.865080.jpg',
  './refer1/P/13_0.946077_gray_14963_5808_step5_recog_3_P_0.992239_0.938735.jpg',
  './refer1/P/14_0.650400_gray_16119_6387_step5_recog_6_P_0.881649_0.573425.jpg',
  './refer1/P/1_0.971263_gray_5184_1969_step5_recog_2_P_0.996290_0.967659.jpg',
  './refer1/P/2_0.943058_gray_17056_6688_step5_recog_2_P_0.987215_0.931001.jpg',
  './refer1/P/3_0.878903_gray_686_224_step5_recog_3_P_0.974101_0.856140.jpg',
  './refer1/P/4_0.986550_gray_13601_5386_step5_recog_6_P_0.997846_0.984425.jpg',
  './refer1/P/5_0.941705_gray_4746_1795_step5_recog_3_P_0.991467_0.933669.jpg',
  './refer1/P/6_0.970246_gray_14456_5576_step5_recog_2_P_0.996727_0.967070.jpg',
  './refer1/P/7_0.876547_gray_8404_3209_step5_recog_6_P_0.978181_0.857422.jpg',
  './refer1/P/8_0.970713_gray_9241_5818_step5_recog_2_P_0.996902_0.967706.jpg',
  './refer1/P/9_0.963659_gray_9291_5842_step5_recog_2_P_0.995800_0.959611.jpg'],
 ['./refer1/Q/10_0.957247_gray_6672_2767_step5_recog_3_Q_0.994805_0.952274.jpg',
  './refer1/Q/11_0.427191_gray_5018_2972_step5_recog_3_Q_0.873276_0.373056.jpg',
  './refer1/Q/12_0.921622_gray_1630_855_step5_recog_2_Q_0.992235_0.914465.jpg',
  './refer1/Q/13_0.170186_gray_108_75_step5_recog_3_Q_0.266509_0.045356.jpg',
  './refer1/Q/1_0.896413_gray_23702_9843_step5_recog_3_Q_0.989934_0.887390.jpg',
  './refer1/Q/2_0.943680_gray_5986_2665_step5_recog_2_Q_0.991782_0.935926.jpg',
  './refer1/Q/3_0.933078_gray_5271_2002_step5_recog_2_Q_0.994015_0.927494.jpg',
  './refer1/Q/4_0.962234_gray_12436_4753_step5_recog_3_Q_0.996680_0.959039.jpg',
  './refer1/Q/5_0.894205_gray_11500_4401_step5_recog_3_Q_0.967391_0.865046.jpg',
  './refer1/Q/6_0.913974_gray_5464_2075_step5_recog_2_Q_0.992729_0.907328.jpg',
  './refer1/Q/8_0.982000_gray_4910_2069_step5_recog_2_Q_0.998339_0.980369.jpg',
  './refer1/Q/9_0.330068_gray_438_245_step5_recog_3_Q_0.749807_0.247487.jpg'],
 ['./refer1/R/10_0.733603_gray_67_28_step5_recog_12_R_0.954291_0.700071.jpg',
  './refer1/R/11_0.966881_gray_4013_1684_step5_recog_2_R_0.996231_0.963236.jpg',
  './refer1/R/12_0.762325_gray_57_24_step5_recog_3_R_0.967435_0.737500.jpg',
  './refer1/R/13_0.884607_gray_18523_7385_step5_recog_3_R_0.985309_0.871611.jpg',
  './refer1/R/1_0.825690_gray_1753_784_step5_recog_2_R_0.972938_0.803345.jpg',
  './refer1/R/2_0.714610_gray_834_490_step5_recog_2_R_0.958582_0.685012.jpg',
  './refer1/R/3_0.970060_gray_2672_1095_step5_recog_3_R_0.995265_0.965467.jpg',
  './refer1/R/4_0.816042_gray_21481_8735_step5_recog_2_R_0.976170_0.796596.jpg',
  './refer1/R/5_0.937897_gray_7096_2764_step5_recog_2_R_0.989760_0.928293.jpg',
  './refer1/R/6_0.963424_gray_31026_13054_step5_recog_2_R_0.995435_0.959026.jpg',
  './refer1/R/8_0.804219_gray_1836_715_step5_recog_2_R_0.973756_0.783112.jpg',
  './refer1/R/9_0.905069_gray_16965_6697_step5_recog_2_R_0.986726_0.893055.jpg'],
 ['./refer1/S/10_0.960129_gray_9439_3615_step5_recog_2_S_0.993876_0.954249.jpg',
  './refer1/S/11_0.881931_gray_3953_1298_step5_recog_3_S_0.974432_0.859382.jpg',
  './refer1/S/12_0.974543_gray_8237_3613_step5_recog_3_S_0.997189_0.971803.jpg',
  './refer1/S/13_0.972970_gray_13892_6243_step5_recog_3_S_0.996249_0.969321.jpg',
  './refer1/S/1_0.915882_gray_1591_1054_step5_recog_3_S_0.984284_0.901489.jpg',
  './refer1/S/2_0.808934_gray_4121_1780_step5_recog_2_S_0.954769_0.772345.jpg',
  './refer1/S/3_0.898370_gray_9355_5882_step5_recog_2_S_0.979901_0.880314.jpg',
  './refer1/S/4_0.865236_gray_4400_1644_step5_recog_2_S_0.977628_0.845879.jpg',
  './refer1/S/5_0.965222_gray_4173_2094_step5_recog_1_S_0.994454_0.959869.jpg',
  './refer1/S/6_0.885687_gray_7341_3222_step5_recog_3_S_0.977916_0.866127.jpg',
  './refer1/S/8_0.912068_gray_5597_2247_step5_recog_3_S_0.984763_0.898171.jpg',
  './refer1/S/9_0.887542_gray_7476_3411_step5_recog_2_S_0.976931_0.867067.jpg'],
 ['./refer1/T/10_0.896988_gray_7829_3428_step5_recog_2_T_0.981740_0.880610.jpg',
  './refer1/T/11_0.916280_gray_7284_2653_step5_recog_2_T_0.987403_0.904738.jpg',
  './refer1/T/12_0.702447_gray_950_429_step5_recog_2_T_0.889261_0.624659.jpg',
  './refer1/T/13_0.864630_gray_5924_2350_step5_recog_2_T_0.984872_0.851550.jpg',
  './refer1/T/1_0.854776_gray_22097_9032_step5_recog_3_T_0.970822_0.829835.jpg',
  './refer1/T/2_0.975896_gray_39566_16558_step5_recog_2_T_0.996388_0.972371.jpg',
  './refer1/T/3_0.764959_gray_2851_878_step5_recog_2_T_0.963537_0.737067.jpg',
  './refer1/T/4_0.841609_gray_27098_11277_step5_recog_3_T_0.970783_0.817020.jpg',
  './refer1/T/5_0.930136_gray_17567_7424_step5_recog_2_T_0.989504_0.920373.jpg',
  './refer1/T/6_0.958115_gray_9258_3970_step5_recog_3_T_0.987369_0.946012.jpg',
  './refer1/T/8_0.631868_gray_19887_7979_step5_recog_3_T_0.911900_0.576200.jpg',
  './refer1/T/9_0.984033_gray_11012_4508_step5_recog_2_T_0.998342_0.982401.jpg'],
 ['./refer1/U/10_0.411572_gray_701_428_step5_recog_3_U_0.835016_0.343669.jpg',
  './refer1/U/11_0.932508_gray_1748_1091_step5_recog_2_U_0.984699_0.918240.jpg',
  './refer1/U/12_0.986982_gray_34010_14375_step5_recog_2_U_0.997945_0.984953.jpg',
  './refer1/U/13_0.892810_gray_5915_2214_step5_recog_3_U_0.983100_0.877722.jpg',
  './refer1/U/1_0.937065_gray_13663_5398_step5_recog_2_U_0.988776_0.926548.jpg',
  './refer1/U/2_0.925886_gray_3123_1946_step5_recog_2_U_0.981160_0.908442.jpg',
  './refer1/U/3_0.979431_gray_23593_9710_step5_recog_10_U_0.996566_0.976068.jpg',
  './refer1/U/4_0.948690_gray_38650_16188_step5_recog_2_U_0.994560_0.943529.jpg',
  './refer1/U/5_0.728293_gray_1973_999_step5_recog_2_U_0.933776_0.680062.jpg',
  './refer1/U/6_0.767376_gray_16820_6595_step5_recog_2_U_0.965976_0.741267.jpg',
  './refer1/U/8_0.901969_gray_16829_6602_step5_recog_2_U_0.987301_0.890515.jpg',
  './refer1/U/9_0.923421_gray_15536_6833_step5_recog_3_U_0.988769_0.913050.jpg'],
 ['./refer1/V/10_0.922559_gray_2399_1233_step5_recog_3_V_0.989137_0.912538.jpg',
  './refer1/V/11_0.792739_gray_1265_840_step5_recog_2_V_0.968377_0.767670.jpg',
  './refer1/V/12_0.922367_gray_7182_4525_step5_recog_2_V_0.981667_0.905457.jpg',
  './refer1/V/13_0.869429_gray_945_371_step5_recog_2_V_0.972003_0.845088.jpg',
  './refer1/V/1_0.951932_gray_3175_1622_step5_recog_2_V_0.994878_0.947056.jpg',
  './refer1/V/2_0.898569_gray_35567_15068_step5_recog_2_V_0.987414_0.887260.jpg',
  './refer1/V/3_0.614111_gray_11096_4752_step5_recog_2_V_0.788551_0.484258.jpg',
  './refer1/V/4_0.871251_gray_7039_3094_step5_recog_3_V_0.977197_0.851384.jpg',
  './refer1/V/5_0.807128_gray_18168_7304_step5_recog_3_V_0.962966_0.777237.jpg',
  './refer1/V/6_0.907253_gray_2594_1337_step5_recog_3_V_0.990280_0.898435.jpg',
  './refer1/V/8_0.770797_gray_2046_1357_step5_recog_3_V_0.902379_0.695551.jpg',
  './refer1/V/9_0.940597_gray_4096_2321_step5_recog_3_V_0.993665_0.934638.jpg'],
 ['./refer1/W/10_0.872275_gray_4920_1689_step5_recog_3_W_0.984023_0.858339.jpg',
  './refer1/W/11_0.911315_gray_9622_3684_step5_recog_3_W_0.988020_0.900397.jpg',
  './refer1/W/12_0.916741_gray_8052_3503_step5_recog_3_W_0.990552_0.908080.jpg',
  './refer1/W/13_0.950171_gray_6960_3218_step5_recog_3_W_0.987760_0.938541.jpg',
  './refer1/W/1_0.959592_gray_10493_4677_step5_recog_3_W_0.995268_0.955051.jpg',
  './refer1/W/2_0.936905_gray_4913_2400_step5_recog_3_W_0.983531_0.921475.jpg',
  './refer1/W/3_0.937476_gray_17271_6851_step5_recog_3_W_0.989319_0.927463.jpg',
  './refer1/W/4_0.903183_gray_7524_2882_step5_recog_2_W_0.986087_0.890617.jpg',
  './refer1/W/5_0.789959_gray_1679_528_step5_recog_3_W_0.964691_0.762067.jpg',
  './refer1/W/6_0.901925_gray_3745_2144_step5_recog_2_W_0.983049_0.886636.jpg',
  './refer1/W/8_0.922784_gray_8554_3732_step5_recog_3_W_0.986080_0.909939.jpg',
  './refer1/W/9_0.971066_gray_20823_8561_step5_recog_2_W_0.995840_0.967026.jpg'],
 ['./refer1/X/10_0.886912_gray_27389_11393_step5_recog_2_X_0.982305_0.871218.jpg',
  './refer1/X/11_0.848977_gray_13789_5429_step5_recog_2_X_0.981225_0.833037.jpg',
  './refer1/X/12_0.967334_gray_4248_2127_step5_recog_2_X_0.995008_0.962504.jpg',
  './refer1/X/13_0.875447_gray_7194_3011_step5_recog_3_X_0.979047_0.857104.jpg',
  './refer1/X/1_0.784148_gray_12505_4895_step5_recog_3_X_0.963654_0.755647.jpg',
  './refer1/X/2_0.869922_gray_465_209_step5_recog_3_X_0.976831_0.849767.jpg',
  './refer1/X/3_0.727601_gray_6122_2539_step5_recog_3_X_0.939530_0.683603.jpg',
  './refer1/X/4_0.924539_gray_969_609_step5_recog_3_X_0.988965_0.914337.jpg',
  './refer1/X/5_0.885554_gray_15673_6120_step5_recog_3_X_0.980783_0.868537.jpg',
  './refer1/X/6_0.901825_gray_1848_825_step5_recog_3_X_0.988823_0.891745.jpg',
  './refer1/X/8_0.852768_gray_8725_3272_step5_recog_2_X_0.973963_0.830564.jpg',
  './refer1/X/9_0.830374_gray_12729_4993_step5_recog_2_X_0.960486_0.797562.jpg'],
 ['./refer1/Y/10_0.798680_gray_1306_588_step5_recog_3_Y_0.924520_0.738396.jpg',
  './refer1/Y/11_0.806614_gray_7753_4952_step5_recog_3_Y_0.953290_0.768936.jpg',
  './refer1/Y/12_0.825640_gray_792_377_step5_recog_9_Y_0.961198_0.793603.jpg',
  './refer1/Y/13_0.826816_gray_6537_3084_step5_recog_3_Y_0.957552_0.791719.jpg',
  './refer1/Y/1_0.682707_gray_11478_4395_step5_recog_3_Y_0.839242_0.572957.jpg',
  './refer1/Y/2_0.682945_gray_11157_4766_step5_recog_3_Y_0.924413_0.631323.jpg',
  './refer1/Y/3_0.684386_gray_3612_1164_step5_recog_3_Y_0.928351_0.635351.jpg',
  './refer1/Y/4_0.713376_gray_4174_2359_step5_recog_3_Y_0.936719_0.668233.jpg',
  './refer1/Y/5_0.716368_gray_2540_1164_step5_recog_3_Y_0.943968_0.676229.jpg',
  './refer1/Y/6_0.716368_gray_2540_1164_step5_recog_9_Y_0.943968_0.676229.jpg',
  './refer1/Y/8_0.791693_gray_1940_767_step5_recog_3_Y_0.924239_0.731714.jpg',
  './refer1/Y/9_0.794526_gray_14440_5722_step5_recog_3_Y_0.880907_0.699904.jpg'],
 ['./refer1/Z/10_0.910116_gray_10322_4457_step5_recog_2_Z_0.989836_0.900865.jpg',
  './refer1/Z/11_0.949052_gray_27781_11577_step5_recog_2_Z_0.994315_0.943657.jpg',
  './refer1/Z/12_0.463678_gray_763_458_step5_recog_2_Z_0.710230_0.329318.jpg',
  './refer1/Z/13_0.927769_gray_2656_1170_step5_recog_3_Z_0.989801_0.918307.jpg',
  './refer1/Z/1_0.791234_gray_279_110_step5_recog_2_Z_0.968809_0.766555.jpg',
  './refer1/Z/2_0.900613_gray_264_119_step5_recog_2_Z_0.982687_0.885020.jpg',
  './refer1/Z/3_0.754862_gray_611_171_step5_recog_2_Z_0.955649_0.721383.jpg',
  './refer1/Z/4_0.925386_gray_4695_1977_step5_recog_3_Z_0.982148_0.908866.jpg',
  './refer1/Z/5_0.856767_gray_3139_1498_step5_recog_2_Z_0.980599_0.840146.jpg',
  './refer1/Z/6_0.978158_gray_5476_2283_step5_recog_2_Z_0.997807_0.976012.jpg',
  './refer1/Z/8_0.583985_gray_594_267_step5_recog_2_Z_0.877451_0.512418.jpg',
  './refer1/Z/9_0.972747_gray_7435_3130_step5_recog_3_Z_0.997437_0.970253.jpg']]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626
  • 627
  • 628
  • 629
  • 630
  • 631
  • 632
  • 633
  • 634
  • 635
  • 636
  • 637
  • 638
  • 639
  • 640
  • 641
  • 642
  • 643
  • 644
  • 645
  • 646
  • 647
  • 648
  • 649
  • 650
  • 651
  • 652
  • 653
  • 654
  • 655
  • 656
  • 657
  • 658
  • 659
  • 660
  • 661
  • 662
  • 663
  • 664
  • 665
  • 666
  • 667
  • 668
  • 669
  • 670
  • 671
  • 672
  • 673
  • 674
  • 675
  • 676
  • 677
  • 678
  • 679
  • 680
  • 681
  • 682
  • 683
  • 684
  • 685
  • 686
  • 687
  • 688
  • 689
  • 690
  • 691
  • 692
  • 693
  • 694
  • 695
  • 696
  • 697
  • 698
  • 699
  • 700
  • 701
  • 702
  • 703
  • 704
  • 705
  • 706
  • 707
  • 708
  • 709
  • 710
  • 711
  • 712
  • 713
  • 714
  • 715
  • 716
  • 717
  • 718
  • 719
  • 720
  • 721
  • 722
  • 723
  • 724
  • 725
  • 726
  • 727
  • 728
  • 729
  • 730
  • 731
  • 732
  • 733
  • 734
  • 735
  • 736
  • 737
  • 738
  • 739
  • 740
  • 741
  • 742
  • 743
  • 744
  • 745
  • 746
  • 747
  • 748
  • 749
  • 750
  • 751
  • 752
  • 753
  • 754
  • 755
  • 756
  • 757
  • 758
  • 759
  • 760
  • 761
  • 762
  • 763
  • 764
  • 765
  • 766
  • 767
  • 768
  • 769
  • 770
  • 771
  • 772
  • 773
  • 774
  • 775
  • 776
  • 777
  • 778
  • 779
  • 780
  • 781
  • 782
  • 783
  • 784
  • 785
  • 786
  • 787
  • 788
  • 789
  • 790
  • 791
  • 792
  • 793
  • 794
  • 795
  • 796
  • 797
  • 798
  • 799
  • 800
  • 801
  • 802
  • 803
  • 804
  • 805
  • 806
  • 807
  • 808
  • 809
  • 810
  • 811
  • 812
  • 813
  • 814
  • 815
  • 816
  • 817
  • 818
  • 819
  • 820
  • 821
  • 822
  • 823
  • 824
  • 825
  • 826
  • 827
  • 828
  • 829
  • 830
  • 831
  • 832
  • 833
  • 834
  • 835
  • 836
  • 837
  • 838
  • 839
  • 840
  • 841
  • 842
  • 843
  • 844
  • 845
  • 846
  • 847
  • 848
  • 849
  • 850
  • 851
  • 852
  • 853
  • 854
  • 855
  • 856
  • 857
  • 858
  • 859
  • 860
  • 861
  • 862
  • 863
  • 864
  • 865
  • 866
  • 867
  • 868
  • 869
  • 870
  • 871
  • 872
  • 873
  • 874
  • 875
  • 876
  • 877
  • 878
  • 879
  • 880
  • 881
  • 882
  • 883
  • 884
  • 885
  • 886
  • 887
  • 888
  • 889
  • 890
  • 891
  • 892
  • 893
  • 894
  • 895
  • 896
  • 897
  • 898
  • 899
  • 900
  • 901
  • 902
  • 903
  • 904
  • 905
  • 906
  • 907
  • 908
  • 909
  • 910
  • 911
  • 912
  • 913
  • 914
  • 915
  • 916
  • 917
  • 918
  • 919
  • 920
  • 921
  • 922
  • 923
  • 924
  • 925
  • 926
  • 927
  • 928
  • 929
  • 930
  • 931
  • 932
  • 933
  • 934
  • 935
  • 936
  • 937
  • 938
  • 939
  • 940
  • 941
  • 942
  • 943
  • 944
  • 945
  • 946
  • 947
  • 948
  • 949
  • 950
  • 951
  • 952
  • 953
  • 954
  • 955
  • 956
  • 957
  • 958
  • 959
  • 960
  • 961
  • 962
  • 963
  • 964
  • 965
  • 966
  • 967
  • 968
  • 969
  • 970
  • 971
  • 972
  • 973
  • 974
  • 975
  • 976
  • 977
  • 978
  • 979
  • 980
  • 981
  • 982
  • 983
  • 984
  • 985
  • 986
  • 987
  • 988
  • 989
  • 990
  • 991
  • 992
  • 993
  • 994
  • 995
  • 996
  • 997
  • 998
  • 999
  • 1000
  • 1001
  • 1002
  • 1003
  • 1004
  • 1005
  • 1006
  • 1007
  • 1008
  • 1009
  • 1010
  • 1011
  • 1012
  • 1013
  • 1014
  • 1015
  • 1016
  • 1017
  • 1018
  • 1019
  • 1020
  • 1021
  • 1022
  • 1023
  • 1024
  • 1025
  • 1026
  • 1027
  • 1028
  • 1029
  • 1030
  • 1031
  • 1032
  • 1033
  • 1034
  • 1035
  • 1036
  • 1037
  • 1038
  • 1039
  • 1040
  • 1041
  • 1042
  • 1043
  • 1044
  • 1045
  • 1046
  • 1047
  • 1048
  • 1049
  • 1050
  • 1051
  • 1052
  • 1053
  • 1054
  • 1055
  • 1056
  • 1057
  • 1058
  • 1059
  • 1060
  • 1061
  • 1062
  • 1063
  • 1064
  • 1065
  • 1066
  • 1067
  • 1068
  • 1069
  • 1070
  • 1071
  • 1072
  • 1073
  • 1074
  • 1075
  • 1076
  • 1077
  • 1078
  • 1079
  • 1080
  • 1081
  • 1082
  • 1083
  • 1084
  • 1085
  • 1086
  • 1087
  • 1088
  • 1089
  • 1090
  • 1091
  • 1092
  • 1093
  • 1094
  • 1095
  • 1096
  • 1097
  • 1098
  • 1099
  • 1100
  • 1101
  • 1102
  • 1103
  • 1104
  • 1105
  • 1106
  • 1107
  • 1108
  • 1109
  • 1110
  • 1111
  • 1112
  • 1113
  • 1114
  • 1115
  • 1116
  • 1117
  • 1118
  • 1119
  • 1120
  • 1121
  • 1122
  • 1123
  • 1124
  • 1125
  • 1126
  • 1127
  • 1128
  • 1129
  • 1130
  • 1131
  • 1132
  • 1133
  • 1134
  • 1135
  • 1136
  • 1137
  • 1138
  • 1139
  • 1140
  • 1141
  • 1142
  • 1143
  • 1144
  • 1145
  • 1146
  • 1147
  • 1148
  • 1149
  • 1150
  • 1151
  • 1152
  • 1153
  • 1154
  • 1155
  • 1156
  • 1157
  • 1158
  • 1159
  • 1160
  • 1161
  • 1162
  • 1163
  • 1164
  • 1165
  • 1166
  • 1167
  • 1168
  • 1169
  • 1170
  • 1171
  • 1172
  • 1173
  • 1174
  • 1175
  • 1176
  • 1177
  • 1178
  • 1179
  • 1180
  • 1181
  • 1182
  • 1183
  • 1184
  • 1185
  • 1186
  • 1187
  • 1188
  • 1189
  • 1190
  • 1191
  • 1192
  • 1193
  • 1194
  • 1195
  • 1196
  • 1197
  • 1198
  • 1199
  • 1200
  • 1201
  • 1202
  • 1203
  • 1204
  • 1205
  • 1206
  • 1207
  • 1208
  • 1209
  • 1210
  • 1211
  • 1212
  • 1213
  • 1214
  • 1215
  • 1216
  • 1217
  • 1218
  • 1219
  • 1220
  • 1221
  • 1222
  • 1223
  • 1224
  • 1225
  • 1226
  • 1227
  • 1228
  • 1229
  • 1230
  • 1231
  • 1232
  • 1233
  • 1234
  • 1235
  • 1236
  • 1237
  • 1238
  • 1239
  • 1240
  • 1241
  • 1242
  • 1243
  • 1244
  • 1245
  • 1246
  • 1247
  • 1248
  • 1249
  • 1250
  • 1251
  • 1252
  • 1253
  • 1254
  • 1255
  • 1256
  • 1257
  • 1258
  • 1259
  • 1260
  • 1261
  • 1262
  • 1263
  • 1264
  • 1265
  • 1266
  • 1267
  • 1268
  • 1269
  • 1270
  • 1271
  • 1272
  • 1273
  • 1274
  • 1275
  • 1276
  • 1277
  • 1278
  • 1279
  • 1280
  • 1281
  • 1282
  • 1283
  • 1284
  • 1285
  • 1286
  • 1287
  • 1288
  • 1289
  • 1290
  • 1291
  • 1292
  • 1293
  • 1294
  • 1295
  • 1296
  • 1297
  • 1298
  • 1299
  • 1300
  • 1301
  • 1302
  • 1303
  • 1304
  • 1305
  • 1306
  • 1307
  • 1308
  • 1309
  • 1310
  • 1311
  • 1312
  • 1313
  • 1314
  • 1315
  • 1316
  • 1317
  • 1318
  • 1319
  • 1320
  • 1321
  • 1322
  • 1323
  • 1324
  • 1325
  • 1326
  • 1327
  • 1328
  • 1329
  • 1330
  • 1331
  • 1332
  • 1333
  • 1334
  • 1335
  • 1336
  • 1337
  • 1338
  • 1339
  • 1340
  • 1341
  • 1342
  • 1343
  • 1344
  • 1345
  • 1346
  • 1347
  • 1348
  • 1349
  • 1350
  • 1351
  • 1352
  • 1353
  • 1354
  • 1355
  • 1356
  • 1357
  • 1358
  • 1359
  • 1360
  • 1361
  • 1362
  • 1363
  • 1364
  • 1365
  • 1366
  • 1367
  • 1368
  • 1369
  • 1370
  • 1371
  • 1372
  • 1373
  • 1374
  • 1375
  • 1376
  • 1377
  • 1378
  • 1379
  • 1380
  • 1381
  • 1382
  • 1383
  • 1384
  • 1385
  • 1386
  • 1387
  • 1388
  • 1389
  • 1390
  • 1391
  • 1392
  • 1393
  • 1394
  • 1395
  • 1396
  • 1397
  • 1398
  • 1399
  • 1400
  • 1401
  • 1402
  • 1403
  • 1404
  • 1405
  • 1406
  • 1407
  • 1408
  • 1409
  • 1410
  • 1411
  • 1412
  • 1413
  • 1414
  • 1415
  • 1416
  • 1417
  • 1418
  • 1419
  • 1420
  • 1421
  • 1422
  • 1423
  • 1424
  • 1425
  • 1426
  • 1427
  • 1428
  • 1429
  • 1430
  • 1431
  • 1432
  • 1433
  • 1434
  • 1435
  • 1436
  • 1437
  • 1438
  • 1439
  • 1440
  • 1441
  • 1442
  • 1443
  • 1444
  • 1445
  • 1446
  • 1447
  • 1448
  • 1449
  • 1450
  • 1451
  • 1452
  • 1453
  • 1454
  • 1455
  • 1456
  • 1457
  • 1458
  • 1459
  • 1460
  • 1461
  • 1462
  • 1463
  • 1464
  • 1465
  • 1466
  • 1467
  • 1468
  • 1469
  • 1470
  • 1471
  • 1472
  • 1473
  • 1474
  • 1475
  • 1476
  • 1477
  • 1478
  • 1479
  • 1480
  • 1481
  • 1482
  • 1483
  • 1484
  • 1485
  • 1486
  • 1487
  • 1488
  • 1489
  • 1490
  • 1491
  • 1492
  • 1493
  • 1494
  • 1495
  • 1496
  • 1497
  • 1498
  • 1499
  • 1500
  • 1501
  • 1502
  • 1503
  • 1504
  • 1505
  • 1506
  • 1507
  • 1508
  • 1509
  • 1510
  • 1511
  • 1512
  • 1513
  • 1514
  • 1515
  • 1516
  • 1517
  • 1518
  • 1519
  • 1520
  • 1521
  • 1522
  • 1523
  • 1524
  • 1525
  • 1526
  • 1527
  • 1528
  • 1529
  • 1530
  • 1531
  • 1532
  • 1533
  • 1534
  • 1535
  • 1536
  • 1537
  • 1538
  • 1539
  • 1540
  • 1541
  • 1542
  • 1543
  • 1544
  • 1545
  • 1546
  • 1547
  • 1548
  • 1549
  • 1550
  • 1551
  • 1552
  • 1553
  • 1554
  • 1555
  • 1556
  • 1557
  • 1558
  • 1559
  • 1560
  • 1561
  • 1562
  • 1563
  • 1564
  • 1565
  • 1566
  • 1567
  • 1568
  • 1569
  • 1570
  • 1571
  • 1572
  • 1573
  • 1574
  • 1575
  • 1576
  • 1577
  • 1578
  • 1579
  • 1580
  • 1581
  • 1582
  • 1583
  • 1584
  • 1585
  • 1586
  • 1587
  • 1588
  • 1589
  • 1590
  • 1591
  • 1592
  • 1593
  • 1594
  • 1595
  • 1596
  • 1597
  • 1598
  • 1599
  • 1600
  • 1601
  • 1602
  • 1603
  • 1604
  • 1605
  • 1606
  • 1607
  • 1608
  • 1609
  • 1610
  • 1611
  • 1612
  • 1613
  • 1614
  • 1615
  • 1616
  • 1617
  • 1618
  • 1619
  • 1620
  • 1621
  • 1622
  • 1623
  • 1624
  • 1625
  • 1626
  • 1627
  • 1628
  • 1629
  • 1630
  • 1631
  • 1632
  • 1633
  • 1634
  • 1635
  • 1636
  • 1637
  • 1638
  • 1639
  • 1640
  • 1641
  • 1642
  • 1643
  • 1644
  • 1645
  • 1646
  • 1647
  • 1648
  • 1649
  • 1650
  • 1651
  • 1652
  • 1653
  • 1654
  • 1655
  • 1656
  • 1657
  • 1658
  • 1659
  • 1660
  • 1661
  • 1662
  • 1663
  • 1664
  • 1665
  • 1666
  • 1667
  • 1668
  • 1669
  • 1670
  • 1671
  • 1672
  • 1673
  • 1674
  • 1675
  • 1676
  • 1677
  • 1678
  • 1679
  • 1680
  • 1681
  • 1682
  • 1683
  • 1684
  • 1685
  • 1686
  • 1687
  • 1688
  • 1689
  • 1690
  • 1691
  • 1692
  • 1693
  • 1694
  • 1695
  • 1696
  • 1697
  • 1698
  • 1699
  • 1700
  • 1701
  • 1702
  • 1703
  • 1704
  • 1705
  • 1706
  • 1707
  • 1708
  • 1709
  • 1710
  • 1711
  • 1712
  • 1713
  • 1714
  • 1715
  • 1716
  • 1717
  • 1718
  • 1719
  • 1720
  • 1721
  • 1722
  • 1723
  • 1724
  • 1725
  • 1726
  • 1727
  • 1728
  • 1729
  • 1730
  • 1731
  • 1732
  • 1733
  • 1734
  • 1735
  • 1736
  • 1737
  • 1738
  • 1739
  • 1740
  • 1741
  • 1742
  • 1743
  • 1744
  • 1745
  • 1746
  • 1747
  • 1748
  • 1749
  • 1750
  • 1751
  • 1752
  • 1753
  • 1754
  • 1755
  • 1756
  • 1757
  • 1758
  • 1759
  • 1760
  • 1761
  • 1762
  • 1763
  • 1764
  • 1765
  • 1766
  • 1767
  • 1768
  • 1769
  • 1770
  • 1771
  • 1772
  • 1773
  • 1774
  • 1775
  • 1776
  • 1777
  • 1778
  • 1779
  • 1780
  • 1781
  • 1782
  • 1783
  • 1784
  • 1785
  • 1786
  • 1787
  • 1788
  • 1789
  • 1790
  • 1791
  • 1792
  • 1793
  • 1794
  • 1795
  • 1796
  • 1797
  • 1798
  • 1799
  • 1800
  • 1801
  • 1802
  • 1803
  • 1804
  • 1805
  • 1806
  • 1807
  • 1808
  • 1809
  • 1810
  • 1811
  • 1812
  • 1813
  • 1814
  • 1815
  • 1816
  • 1817
  • 1818
  • 1819
  • 1820
  • 1821
  • 1822
  • 1823
  • 1824
  • 1825
  • 1826
  • 1827
  • 1828
  • 1829
  • 1830
  • 1831
  • 1832
  • 1833
  • 1834
  • 1835
  • 1836
  • 1837
  • 1838
  • 1839
  • 1840
  • 1841
  • 1842
  • 1843
  • 1844
  • 1845
  • 1846
  • 1847
  • 1848
  • 1849
  • 1850
  • 1851
  • 1852
  • 1853
  • 1854
  • 1855
  • 1856
  • 1857
  • 1858
  • 1859
  • 1860
  • 1861
  • 1862
  • 1863
  • 1864
  • 1865
  • 1866
  • 1867
  • 1868
  • 1869
  • 1870
  • 1871
  • 1872
  • 1873
  • 1874
  • 1875
  • 1876
  • 1877
  • 1878
  • 1879
  • 1880
  • 1881
  • 1882
  • 1883
  • 1884
  • 1885
  • 1886
  • 1887
  • 1888
  • 1889
  • 1890
  • 1891
  • 1892
  • 1893
  • 1894
  • 1895
  • 1896
  • 1897
  • 1898
  • 1899
  • 1900
  • 1901
  • 1902
  • 1903
  • 1904
  • 1905
  • 1906
  • 1907
  • 1908
  • 1909
  • 1910
  • 1911
  • 1912
  • 1913
  • 1914
  • 1915
  • 1916
  • 1917
  • 1918
  • 1919
  • 1920
  • 1921
  • 1922
  • 1923
  • 1924
  • 1925
  • 1926
  • 1927
  • 1928
  • 1929
  • 1930
  • 1931
  • 1932
  • 1933
  • 1934
  • 1935
  • 1936
  • 1937
  • 1938
  • 1939
  • 1940
  • 1941
  • 1942
  • 1943
  • 1944
  • 1945
  • 1946
  • 1947
  • 1948
  • 1949
  • 1950
  • 1951
  • 1952
  • 1953
  • 1954
  • 1955
  • 1956
  • 1957
  • 1958
  • 1959
  • 1960
  • 1961
  • 1962
  • 1963
  • 1964
  • 1965
  • 1966
  • 1967
  • 1968
  • 1969
  • 1970
  • 1971
  • 1972
  • 1973
  • 1974
  • 1975
  • 1976
  • 1977
  • 1978
  • 1979
  • 1980
  • 1981
  • 1982
  • 1983
  • 1984
  • 1985
  • 1986
  • 1987
  • 1988
  • 1989
  • 1990
  • 1991
  • 1992
  • 1993
  • 1994
  • 1995
  • 1996
  • 1997
  • 1998
  • 1999
  • 2000
  • 2001
  • 2002
  • 2003
  • 2004
  • 2005
  • 2006
  • 2007
  • 2008
  • 2009
  • 2010
  • 2011
  • 2012
  • 2013
  • 2014
  • 2015
  • 2016
  • 2017
  • 2018
  • 2019
  • 2020
  • 2021
  • 2022
  • 2023
import numpy as np
best_score = []
for c_word in c_words:
    score = []
    for word in c_word:
        # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
        template_img=cv2.imdecode(np.fromfile(word,dtype=np.uint8),1)
        template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
        ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
        height, width = template_img.shape
        image = image_.copy()
        image = cv2.resize(image, (width, height))
        result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
        score.append(result[0][0])
    best_score.append(max(score))

print(best_score)
# [-66376.36, 3963548.2, 3141550.2, 3175904.0, 2800020.5, 2178612.2, 4130253.8, 2096163.6, 2067158.1, 1239066.5, 1372073.9, 1149516.2, 1333215.4, 1757303.8, 2605298.0, 1990602.6, 4692668.0, 330763.06, 2393131.2, 391668.53, 607340.5, -365706.47, -278828.62, 1392899.8]
print(max(best_score))
# 4692668.0
print(best_score.index(max(best_score)))
# 16
print(template[10])
# A
print(template[10+16])
# S
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

字母或数字

# 读取一个车牌字符
img = cv2.imread('./words/test1_4.png')
plt_show0(img)
  • 1
  • 2
  • 3

在这里插入图片描述

# 灰度处理,二值化
# 高斯去噪
image = cv2.GaussianBlur(img, (3, 3), 0)
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

# 自适应阈值处理
ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image_)
  • 1
  • 2
  • 3

在这里插入图片描述

# 字母数字模板列表
c_words = []
for i in range(0,34):
    c_word = read_directory('./refer1/'+ template[i])
    c_words.append(c_word)
  • 1
  • 2
  • 3
  • 4
  • 5
import numpy as np
best_score = []
for c_word in c_words:
    score = []
    for word in c_word:
        # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
        template_img=cv2.imdecode(np.fromfile(word,dtype=np.uint8),1)
        template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
        ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
        height, width = template_img.shape
        image = image_.copy()
        image = cv2.resize(image, (width, height))
        result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
        score.append(result[0][0])
    best_score.append(max(score))

print(best_score)
# [2963695.5, 2303256.0, 803304.8, 2365068.5, 434013.8, -83176.92, 1380545.8, 1889097.6, 2604892.5, 1897710.5, -122162.6, 2407313.5, 1802338.0, 263166.38, 1908248.9, 1174134.0, 1311924.5, 674854.2, 1245533.2, 992409.5, 2245806.5, 1212642.0, 1236842.2, 428578.5]
print(max(best_score))
# 2963695.5
print(best_score.index(max(best_score)))
# 0
print(template[0])
# 0
print(template[0+4])
# 4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

将识别结果显示出来

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
# 读取一个车牌字符
img = cv2.imread('./image/test1.png')
plt_show0(img)
  • 1
  • 2
  • 3

在这里插入图片描述

height,weight = img.shape[0:2]
print(height)
# 500
print(weight)
# 900
  • 1
  • 2
  • 3
  • 4
  • 5
list_ = ['豫','A','0','4','S','8','9']
image = img.copy()
cv2.rectangle(image, (int(0.2*weight), int(0.75*height)), (int(weight*0.8), int(height*0.95)), (0, 255, 0), 5)
from PIL import ImageFont

# fontpath = './font/simsun.ttc'
# font = ImageFont.truetype(fontpath, 30)

cv2.putText(image, "".join(list_), (int(0.2*weight)+30, int(0.75*height)+80), cv2.FONT_HERSHEY_COMPLEX, 3, (0, 255, 0), 12)
plt_show0(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

车牌倾斜提取

# 导入所需模块
import cv2
from matplotlib import pyplot as plt

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
# 加载图片
rawImage = cv2.imread("./image/test3.png")
plt_show0(rawImage)
  • 1
  • 2
  • 3

在这里插入图片描述

# 高斯去噪
image = cv2.GaussianBlur(rawImage, (3, 3), 0)
# 预览效果
plt_show0(image)
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3

在这里插入图片描述

# sobel算子边缘检测(做了一个y方向的检测)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
# Sobel_y = cv2.Sobel(image, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8
# absY = cv2.convertScaleAbs(Sobel_y)
# dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
image = absX
plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

# 自适应阈值处理
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5))
print(kernelX)
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))

# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)

plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = rawImage.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
plt_show0(image1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

# 筛选出车牌位置的轮廓
# 这里我只做了一个车牌的长宽比在3:1到4:1之间这样一个判断
for index,item in enumerate(contours):
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 440mm×140mm
    if (weight > (height * 2.5)) and (weight < (height * 4)):
        print(index)
        # 1
        image2 = rawImage.copy()
        cv2.drawContours(image2, contours, 1, (0, 0, 255), 5)
        plt_show0(image2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在这里插入图片描述

contours[1]
  • 1
array([[[153, 156]],

       [[152, 157]],

       [[151, 157]],

       [[148, 160]],

       [[148, 161]],

       [[147, 162]],

       [[147, 164]],

       [[146, 165]],

       [[146, 171]],

       [[145, 172]],

       [[145, 180]],

       [[144, 181]],

       [[144, 195]],

       [[145, 196]],

       [[145, 197]],

       [[148, 200]],

       [[149, 200]],

       [[150, 201]],

       [[153, 201]],

       [[154, 200]],

       [[169, 200]],

       [[170, 201]],

       [[176, 201]],

       [[177, 202]],

       [[179, 202]],

       [[180, 203]],

       [[181, 203]],

       [[182, 204]],

       [[183, 204]],

       [[184, 205]],

       [[185, 205]],

       [[186, 206]],

       [[187, 206]],

       [[189, 208]],

       [[190, 208]],

       [[191, 209]],

       [[192, 209]],

       [[193, 210]],

       [[226, 210]],

       [[227, 211]],

       [[231, 211]],

       [[232, 212]],

       [[233, 212]],

       [[234, 213]],

       [[236, 213]],

       [[237, 214]],

       [[239, 214]],

       [[240, 215]],

       [[243, 215]],

       [[244, 216]],

       [[255, 216]],

       [[256, 217]],

       [[258, 217]],

       [[259, 218]],

       [[261, 218]],

       [[262, 219]],

       [[264, 219]],

       [[265, 220]],

       [[267, 220]],

       [[268, 221]],

       [[278, 221]],

       [[279, 222]],

       [[280, 222]],

       [[281, 223]],

       [[282, 223]],

       [[284, 225]],

       [[285, 225]],

       [[286, 226]],

       [[287, 226]],

       [[288, 227]],

       [[289, 227]],

       [[290, 228]],

       [[291, 228]],

       [[292, 229]],

       [[297, 229]],

       [[298, 228]],

       [[307, 228]],

       [[308, 229]],

       [[312, 229]],

       [[313, 230]],

       [[317, 230]],

       [[318, 231]],

       [[325, 231]],

       [[327, 233]],

       [[328, 233]],

       [[329, 234]],

       [[332, 234]],

       [[336, 230]],

       [[336, 229]],

       [[337, 228]],

       [[337, 226]],

       [[338, 225]],

       [[338, 221]],

       [[339, 220]],

       [[339, 217]],

       [[340, 216]],

       [[340, 211]],

       [[341, 210]],

       [[341, 200]],

       [[340, 199]],

       [[340, 198]],

       [[336, 194]],

       [[335, 194]],

       [[334, 193]],

       [[333, 194]],

       [[313, 194]],

       [[312, 193]],

       [[309, 193]],

       [[305, 189]],

       [[304, 189]],

       [[300, 185]],

       [[298, 185]],

       [[297, 184]],

       [[295, 184]],

       [[294, 183]],

       [[293, 183]],

       [[292, 184]],

       [[288, 184]],

       [[287, 185]],

       [[263, 185]],

       [[262, 184]],

       [[260, 184]],

       [[259, 183]],

       [[257, 183]],

       [[256, 182]],

       [[254, 182]],

       [[253, 181]],

       [[251, 181]],

       [[250, 180]],

       [[244, 180]],

       [[243, 179]],

       [[238, 179]],

       [[237, 178]],

       [[234, 178]],

       [[233, 177]],

       [[230, 177]],

       [[229, 176]],

       [[227, 176]],

       [[226, 175]],

       [[219, 175]],

       [[218, 174]],

       [[204, 174]],

       [[203, 173]],

       [[202, 173]],

       [[199, 170]],

       [[198, 170]],

       [[196, 168]],

       [[195, 168]],

       [[193, 166]],

       [[192, 166]],

       [[191, 165]],

       [[190, 165]],

       [[189, 164]],

       [[188, 164]],

       [[187, 165]],

       [[174, 165]],

       [[173, 164]],

       [[169, 164]],

       [[168, 163]],

       [[166, 163]],

       [[165, 162]],

       [[164, 162]],

       [[163, 161]],

       [[160, 161]],

       [[155, 156]]], dtype=int32)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329

直线拟合找斜率

直线拟合fitline

参数:

  • InputArray Points: 待拟合的直线的集合,必须是矩阵形式;

  • distType: 距离类型。fitline为距离最小化函数,拟合直线时,要使输入点到拟合直线的距离和最小化。这里的** 距离**的类型有以下几种:

  • cv2.DIST_USER : User defined distance

  • cv2.DIST_L1: distance = |x1-x2| + |y1-y2|

  • cv2.DIST_L2: 欧式距离,此时与最小二乘法相同

  • cv2.DIST_C:distance = max(|x1-x2|,|y1-y2|)

  • cv2.DIST_L12:L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))

  • cv2.DIST_FAIR:distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998

  • cv2.DIST_WELSCH: distance = c2/2(1-exp(-(x/c)2)), c = 2.9846

  • cv2.DIST_HUBER:distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345

  • param: 距离参数,跟所选的距离类型有关,值可以设置为0。

  • reps, aeps: 第5/6个参数用于表示拟合直线所需要的径向和角度精度,通常情况下两个值均被设定为1e-2.

output :

  • 对于二维直线,输出output为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。(即通常说的点斜式直线)
  • 其中(vx, vy) 是直线的方向向量,(x, y) 是直线上的一个点。
  • 斜率k = vy / vx
  • 截距b = y - k * x
cnt = contours[1]
image3 = rawImage.copy()

h, w = image3.shape[:2]
[vx, vy, x, y] = cv2.fitLine(cnt, cv2.DIST_L2, 0, 0.01, 0.01)
print([vx, vy, x, y])
# [array([0.9724686], dtype=float32), array([0.23303394], dtype=float32), array([241.13939], dtype=float32), array([196.93939], dtype=float32)]

k = vy/vx
b = y-k*x

print(k,b)
#  [0.23963133] [139.15485]

lefty = b
righty = k*w+b

img = cv2.line(image3, (w, righty), (0, lefty), (0, 255, 0), 2)

plt_show0(img)

print((w, righty))
# (500, array([258.97052], dtype=float32))
print((0, lefty))
# (0, array([139.15485], dtype=float32))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

在这里插入图片描述

import math
a = math.atan(k)
a
# 0.23519635569664088
  • 1
  • 2
  • 3
  • 4
a = math.degrees(a)
a
# 13.475758538275219
  • 1
  • 2
  • 3
image4 = rawImage.copy()
# 图像旋转
h,w = image1.shape[:2]
print(h,w)
#第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
M = cv2.getRotationMatrix2D((w/2,h/2),a,0.8)
#第三个参数:变换后的图像大小
dst = cv2.warpAffine(image4,M,(int(w*1.1),int(h*1.1)))
plt_show0(dst)
# 300 500
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
# 高斯去噪
image = cv2.GaussianBlur(dst, (3, 3), 0)
# 预览效果
plt_show0(image)
  • 1
  • 2
  • 3
  • 4
# 灰度处理
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3

在这里插入图片描述

# sobel算子边缘检测(做了一个y方向的检测)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
# Sobel_y = cv2.Sobel(image, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(Sobel_x)  # 转回uint8
# absY = cv2.convertScaleAbs(Sobel_y)
# dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
image = absX
plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

# 自适应阈值处理
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 闭运算,是白色部分练成整体
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5))
print(kernelX)
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
plt_show(image)
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

# 去除一些小的白点
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))

# 膨胀,腐蚀
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
# 腐蚀,膨胀
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)

plt_show(image)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

# 中值滤波去除噪点
image = cv2.medianBlur(image, 15)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

# 轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
image1 = dst.copy()
cv2.drawContours(image1, contours, -1, (0, 255, 0), 5)
plt_show0(image1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

c = None
i = None
# 筛选出车牌位置的轮廓
# 这里我只做了一个车牌的长宽比在3:1到4:1之间这样一个判断
for item in contours:
    # cv2.boundingRect用一个最小的矩形,把找到的形状包起来
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 440mm×140mm
    if (weight > (height * 2.5)) and (weight < (height * 5)):
        c=rect
        i = item
        image = dst[y:y + height, x:x + weight]
#         cv_show('image',image)
        # 图像保存
        plt_show0(image)
        cv2.imwrite('./car_license/test3.png', image)
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

在这里插入图片描述

字符分割方法

# 导入所需模块
import cv2
from matplotlib import pyplot as plt

# 显示图片
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
# 加载图片
rawImage = cv2.imread("./car_license/test4.png")
plt_show0(rawImage)
  • 1
  • 2
  • 3

在这里插入图片描述

# 灰度处理
image = rawImage.copy()
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
plt_show(gray_image)
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

字符水平方向的切割

目的:去除车牌边框和铆钉的干扰

# 自适应阈值处理(二值化)
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
  • 1
  • 2
  • 3

在这里插入图片描述

image.shape # 47行,170列
rows = image.shape[0]
cols = image.shape[1]
print(rows,cols)
# 33 98
  • 1
  • 2
  • 3
  • 4
  • 5
# 二值统计,统计没每一行的黑值(0)的个数
hd = []
for row in range(rows):
    res = 0
    for col in range(cols):
        if image[row][col] == 0:
            res = res+1
    hd.append(res)
len(hd)
max(hd)
# 62
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
# 画出柱状图
y = [y for y in range(rows)]
x = hd
plt.barh(y,x,color='black',height=1)
# 设置x,y轴标签
plt.xlabel('0_number')
plt.ylabel('row')
# 设置刻度
plt.xticks([x for x in range(0,130,5)])
plt.yticks([y for y in range(0,rows,1)])

plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

中间较为密集的地方就是车牌有字符的地方,从而很好的去除了牌边框及铆钉

从图中可以明显看出车牌字符区域的投影值和车牌边框及铆钉区域的投影值之间明显有一个波谷,找到此处波谷,就可以得到车牌的字符区域,去除车牌边框及铆钉。

x = range(int(rows/2),2,-1)
x = [*x]
x
# [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3]
  • 1
  • 2
  • 3
  • 4
# 定义一个算法,找到波谷,定位车牌字符的行数区域
# 我的思路;对于一个车牌,中间位置肯定是有均匀的黑色点的,所以我将图片垂直分为两部分,找波谷
mean = sum(hd[0:int(rows/2)])/(int(rows/2)+1)
mean
region = []
for i in range(int(rows/2),2,-1): # 0,1行肯定是边框,直接不考虑,直接从第二行开始
    if hd[i]<mean:
        region.append(i)
        break
for i in range(int(rows/2),rows): # 0,1行肯定是边框,直接不考虑,直接从第二行开始
    if hd[i]<mean:
        region.append(i)
        break
region
# [8, 27]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
image1 = image[region[0]:region[1],:] # 使用行区间
  • 1
plt_show(image1)
  • 1

在这里插入图片描述

字符垂直方向的切割

image11 = image1.copy()
  • 1
image11.shape # 47行,170列
rows = image11.shape[0]
cols = image11.shape[1]
print(rows,cols)
# 19 98
  • 1
  • 2
  • 3
  • 4
  • 5
cols
# 98
  • 1
  • 2
# 二值统计,统计没每一列的黑值(0)的个数
hd1 = []
for col in range(cols):
    res = 0
    for row in range(rows):
        if image11[row][col] == 0:
            res = res+1
    hd1.append(res)
len(hd1)
max(hd1)
# 18
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
# 画出柱状图
y = hd1 # 点个数
x = [x for x in range(cols)] # 列数
plt.bar(x,y,color='black',width=1)
# 设置x,y轴标签
plt.xlabel('col')
plt.ylabel('0_number')
# 设置刻度
plt.xticks([x for x in range(0,cols,10)])
plt.yticks([y for y in range(0,max(hd1)+5,5)])

plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

mean = sum(hd1)/len(hd1)
mean
# 6.448979591836735
  • 1
  • 2
  • 3
# 简单的筛选
for i in range(cols):
    if hd1[i] < mean/4:
        hd1[i] = 0
  • 1
  • 2
  • 3
  • 4
# 画出柱状图
y = hd1 # 点个数
x = [x for x in range(cols)] # 列数
plt.bar(x,y,color='black',width=1)
# 设置x,y轴标签
plt.xlabel('col')
plt.ylabel('0_number')
# 设置刻度
plt.xticks([x for x in range(0,cols,10)])
plt.yticks([y for y in range(0,max(hd1)+5,5)])

plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

从直方图中可以看到很多波谷,这些就是字符分割区域的黑色点的个数等于0,我们就可以通过这些0点进行分割,过滤掉这些不需要的部分部分

# 找所有不为0的区间(列数)
region1 = []
reg = []
for i in range(cols-1):
    if hd1[i]==0 and hd1[i+1] != 0:
        reg.append(i)
    if hd1[i]!=0 and hd1[i+1] == 0:
        reg.append(i+2)
    if len(reg) == 2:
        if (reg[1]-reg[0])>5: # 限定区间长度要大于5(可以更大),过滤掉不需要的点
            region1.append(reg) 
            reg = []
        else:
            reg = []
region1
# [[4, 15], [17, 27], [33, 45], [45, 56], [57, 69], [69, 81], [81, 93]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
# 测试
image2 = image1[:,region1[0][0]:region1[0][1]]
plt_show(image2)
  • 1
  • 2
  • 3

在这里插入图片描述

# 为了使字符之间还是存在空格,定义一个2像素白色的区域
import numpy as np
white = []
for i in range(rows*2):
    white.append(255)
white = np.array(white)
white = white.reshape(rows,2)
white.shape
# (19, 2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
#  遍历所有区域,保存字符图片到列表
p = []
for r in region1:
    r = image1[:,r[0]:r[1]]
    plt_show(r)
    p.append(r)
    p.append(white)
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# 将字符图片列表拼接为一张图
image2 = np.hstack(p)
  • 1
  • 2
plt_show(image2)
  • 1

在这里插入图片描述

# 将分割好的字符图片保存到文件夹
print(region)
# [8, 27]
print(region1)
# [[4, 15], [17, 27], [33, 45], [45, 56], [57, 69], [69, 81], [81, 93]]
  • 1
  • 2
  • 3
  • 4
  • 5
plt_show0(rawImage)
  • 1

在这里插入图片描述

v_image = rawImage[region[0]:region[1],:]
plt_show0(v_image)
  • 1
  • 2

在这里插入图片描述

i = 1
for reg in region1:
    h_image = v_image[:,reg[0]:reg[1]]
    plt_show0(h_image)
    cv2.imwrite('./words/test4_'+str(i)+'.png', h_image)
    i = i+1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

word_images = []
for i in range(1,8):
    word =  cv2.imread('./words/test4_'+str(i)+'.png',0)
    ret, word = cv2.threshold(word, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
    word_images.append(word)
word_images
plt.imshow(word_images[0],cmap='gray')    
for i,j in enumerate(word_images):  
    plt.subplot(1,8,i+1)
    plt.imshow(word_images[i],cmap='gray')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/794440
推荐阅读
相关标签
  

闽ICP备14008679号