当前位置:   article > 正文

如何将pytorch模型部署到安卓

pytorch模型部署到安卓

如何将pytorch模型部署到安卓上

这篇文章演示如何将训练好的pytorch模型部署到安卓设备上。我也是刚开始学安卓,代码写的简单。

环境:

pytorch版本:1.10.0

模型转化

pytorch_android支持的模型是.pt模型,我们训练出来的模型是.pth。所以需要转化才可以用。先看官网上给的转化方式:

import torch
import torchvision
from torch.utils.mobile_optimizer import optimize_for_mobile

model = torchvision.models.mobilenet_v3_small(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
optimized_traced_model = optimize_for_mobile(traced_script_module)
optimized_traced_model._save_for_lite_interpreter("app/src/main/assets/model.ptl")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

这个模型在安卓对应的包:

repositories {
    jcenter()
}

dependencies {
    implementation 'org.pytorch:pytorch_android_lite:1.9.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.9.0'
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

注:pytorch_android_lite版本和转化模型用的版本要一致,不一致就会报各种错误。

目前用这种方法有点问题,我采用的另一种方法。

转化代码如下:

import torch
import torch.utils.data.distributed

# pytorch环境中
model_pth = 'model_31_0.96.pth' #模型的参数文件
mobile_pt ='model.pt' # 将模型保存为Android可以调用的文件

model = torch.load(model_pth)
model.eval() # 模型设为评估模式
device = torch.device('cpu')
model.to(device)
# 1张3通道224*224的图片
input_tensor = torch.rand(1, 3, 224, 224) # 设定输入数据格式

mobile = torch.jit.trace(model, input_tensor) # 模型转化
mobile.save(mobile_pt) # 保存文件
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

对应的包:

//pytorch
implementation 'org.pytorch:pytorch_android:1.10.0'
implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'
  • 1
  • 2
  • 3

定义模型文件和转化后的文件路径。

load模型。这里要注意,如果保存模型

torch.save(model,'models.pth')
  • 1

加载模型则是

model=torch.load('models.pth')
  • 1

如果保存模型是

torch.save(model.state_dict(),"models.pth")
  • 1

加载模型则是

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/894106?site
推荐阅读
相关标签
  

闽ICP备14008679号