当前位置:   article > 正文

一文彻底讲透 PyTorch

pytorch

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

汇总合集:

《AIGC 面试宝典》(2024版) 发布!

《大模型面试宝典》(2024版) 发布!


大模型的火热,彻底把PyTorch带火,Tensorflow 最近落寞了很多。想学会大模型,PyTorch 是必需要学的工具之一。

PyTorch 是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。

考虑到PyTorch的学习兼具理论储备和动手训练,两手都要抓两手都要硬的特点,我梳理一份《深入浅出 PyTorch 》,帮助大家从入门到熟练掌握 PyTorch 工具,进而实现自己的深度学习算法。

需要《深入浅出 PyTorch 》,可以加入我们技术群获取。

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:深入浅出 PyTorch
方式②、添加微信号:mlc2040,备注:深入浅出 PyTorch +CSDN

在这里插入图片描述

内容简介

  • 第零章:前置知识
    • 人工智能简史
    • 相关评价指标
    • 常用包的学习
    • Jupyter相关操作
  • 第一章:PyTorch的简介和安装
    • PyTorch简介
    • PyTorch的安装
    • PyTorch相关资源简介
  • 第二章:PyTorch基础知识
    • 张量及其运算
    • 自动求导简介
    • 并行计算、CUDA和cuDNN简介
  • 第三章:PyTorch的主要组成模块
    • 思考:完成一套深度学习流程需要哪些关键环节
    • 基本配置
    • 数据读入
    • 模型构建
    • 损失函数
    • 优化器
    • 训练和评估
    • 可视化
  • 第四章:PyTorch基础实战
    • 基础实战——Fashion-MNIST时装分类
    • 基础实战——果蔬分类实战(notebook)
  • 第五章:PyTorch模型定义
    • 模型定义方式
    • 利用模型块快速搭建复杂网络
    • 模型修改
    • 模型保存与读取
  • 第六章:PyTorch进阶训练技巧
    • 自定义损失函数
    • 动态调整学习率
    • 模型微调-torchvision
    • 模型微调-timm
    • 半精度训练
    • 数据扩充
    • 超参数的修改及保存
    • PyTorch模型定义与进阶训练技巧
  • 第七章:PyTorch可视化
    • 可视化网络结构
    • 可视化CNN卷积层
    • 使用TensorBoard可视化训练过程
    • 使用wandb可视化训练过程
  • 第八章:PyTorch生态简介
    • 简介
    • 图像—torchvision
    • 视频—PyTorchVideo
    • 文本—torchtext
    • 音频-torchaudio
  • 第九章:模型部署
    • 使用ONNX进行部署并推理
  • 第十章:常见网络代码的解读(推进中)
    • 计算机视觉
      • 图像分类
        • ResNet源码解读
        • Swin Transformer源码解读
        • Vision Transformer源码解读
        • RNN源码解读
        • LSTM源码解读及其实战
      • 目标检测
        • YOLO系列解读
      • 图像分割
    • 自然语言处理
      • RNN源码解读
    • 音频处理
    • 视频处理
    • 其他

部分内容展示

在深度学习模型的训练中,权重的初始值极为重要。一个好的初始值,会使模型收敛速度提高,使模型准确率更精确。一般情况下,我们不使用全0初始值训练网络。为了利于训练和减少收敛时间,我们需要对模型进行合理的初始化。PyTorch也在torch.nn.init中为我们提供了常用的初始化方法。
通过本章学习,你将学习到以下内容:

  • 常见的初始化函数
  • 初始化函数的使用

torch.nn.init内容

通过访问torch.nn.init的官方文档链接 ,我们发现torch.nn.init提供了以下初始化方法:
1 . torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
2 . torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
3 . torch.nn.init.constant_(tensor, val)
4 . torch.nn.init.ones_(tensor)
5 . torch.nn.init.zeros_(tensor)
6 . torch.nn.init.eye_(tensor)
7 . torch.nn.init.dirac_(tensor, groups=1)
8 . torch.nn.init.xavier_uniform_(tensor, gain=1.0)
9 . torch.nn.init.xavier_normal_(tensor, gain=1.0)
10 . torch.nn.init.kaiming_uniform_(tensor, a=0, mode=‘fan__in’, nonlinearity=‘leaky_relu’)
11 . torch.nn.init.kaiming_normal_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’)
12 . torch.nn.init.orthogonal_(tensor, gain=1)
13 . torch.nn.init.sparse_(tensor, sparsity, std=0.01)
14 . torch.nn.init.calculate_gain(nonlinearity, param=None)
关于计算增益如下表:

nonlinearitygain
Linear/Identity1
Conv{1,2,3}D1
Sigmod1
Tanh5/3
ReLUsqrt(2)
Leaky Relusqrt(2/1+neg_slop^2)

我们可以发现这些函数除了calculate_gain,所有函数的后缀都带有下划线,意味着这些函数将会直接原地更改输入张量的值。

torch.nn.init使用

我们通常会根据实际模型来使用torch.nn.init进行初始化,通常使用isinstance()来进行判断模块(回顾3.4模型构建)属于什么类型。

import torch
import torch.nn as nn

conv = nn.Conv2d(1,3,3)
linear = nn.Linear(10,1)

isinstance(conv,nn.Conv2d) # 判断conv是否是nn.Conv2d类型
isinstance(linear,nn.Conv2d) # 判断linear是否是nn.Conv2d类型
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
True
False
  • 1
  • 2
'
运行

对于不同的类型层,我们就可以设置不同的权值初始化的方法。

# 查看随机初始化的conv参数
conv.weight.data
# 查看linear的参数
linear.weight.data
  • 1
  • 2
  • 3
  • 4
tensor([[[[ 0.1174,  0.1071,  0.2977],
          [-0.2634, -0.0583, -0.2465],
          [ 0.1726, -0.0452, -0.2354]]],
        [[[ 0.1382,  0.1853, -0.1515],
          [ 0.0561,  0.2798, -0.2488],
          [-0.1288,  0.0031,  0.2826]]],
        [[[ 0.2655,  0.2566, -0.1276],
          [ 0.1905, -0.1308,  0.2933],
          [ 0.0557, -0.1880,  0.0669]]]])

tensor([[-0.0089,  0.1186,  0.1213, -0.2569,  0.1381,  0.3125,  0.1118, -0.0063, -0.2330,  0.1956]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
# 对conv进行kaiming初始化
torch.nn.init.kaiming_normal_(conv.weight.data)
conv.weight.data
# 对linear进行常数初始化
torch.nn.init.constant_(linear.weight.data,0.3)
linear.weight.data
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
tensor([[[[ 0.3249, -0.0500,  0.6703],
          [-0.3561,  0.0946,  0.4380],
          [-0.9426,  0.9116,  0.4374]]],
        [[[ 0.6727,  0.9885,  0.1635],
          [ 0.7218, -1.2841, -0.2970],
          [-0.9128, -0.1134, -0.3846]]],
        [[[ 0.2018,  0.4668, -0.0937],
          [-0.2701, -0.3073,  0.6686],
          [-0.3269, -0.0094,  0.3246]]]])
tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000, 0.3000,0.3000]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

初始化函数的封装

人们常常将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。

def initialize_weights(model):
	for m in model.modules():
		# 判断是否属于Conv2d
		if isinstance(m, nn.Conv2d):
			torch.nn.init.zeros_(m.weight.data)
			# 判断是否有偏置
			if m.bias is not None:
				torch.nn.init.constant_(m.bias.data,0.3)
		elif isinstance(m, nn.Linear):
			torch.nn.init.normal_(m.weight.data, 0.1)
			if m.bias is not None:
				torch.nn.init.zeros_(m.bias.data)
		elif isinstance(m, nn.BatchNorm2d):
			m.weight.data.fill_(1) 		 
			m.bias.data.zeros_()	
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
'
运行

这段代码流程是遍历当前模型的每一层,然后判断各层属于什么类型,然后根据不同类型层,设定不同的权值初始化方法。我们可以通过下面的例程进行一个简短的演示:

# 模型的定义
class MLP(nn.Module):
  # 声明带有模型参数的层,这里声明了两个全连接层
  def __init__(self, **kwargs):
    # 调用MLP父类Block的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
    super(MLP, self).__init__(**kwargs)
    self.hidden = nn.Conv2d(1,1,3)
    self.act = nn.ReLU()
    self.output = nn.Linear(10,1)
    
   # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
  def forward(self, x):
    o = self.act(self.hidden(x))
    return self.output(o)

mlp = MLP()
print(mlp.hidden.weight.data)
print("-------初始化-------")

mlp.apply(initialize_weights)
# 或者initialize_weights(mlp)
print(mlp.hidden.weight.data)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
tensor([[[[ 0.3069, -0.1865,  0.0182],
          [ 0.2475,  0.3330,  0.1352],
          [-0.0247, -0.0786,  0.1278]]]])
"-------初始化-------"
tensor([[[[0., 0., 0.],
          [0., 0., 0.],
          [0., 0., 0.]]]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

注意:
我们在初始化时,最好不要将模型的参数初始化为0,因为这样会导致梯度消失,从而影响模型的训练效果。因此,我们在初始化时,可以使用其他初始化方法或者将模型初始化为一个很小的值,如0.01,0.1等。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/897135
推荐阅读
相关标签
  

闽ICP备14008679号