赞
踩
elasticsearch是一款非常强大的开源搜索引擎,具备非常强大的功能,可以帮助我们从海量数据中快速找到需要的内容。
例如:
elasticsearch结合Kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
elasticsearch底层是基于luence来实现的。Luence是一个Java语言搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发,官网地址:https://lucene.apache.org/ 。
elasticsearch的发展历史:
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
什么是elasticsearch?
什么是elastic stack(ELK)?
什么是Lucene?
倒排索引的概念是基于MySQL这样的正向索引而言的。
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引中有两个非常重要的概念:
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条创建倒排索引是对正向索引的一种特殊处理,流程如下:
为什么一个叫做正向索引,一个叫做倒排索引?
两者的优缺点:
正向索引:
优点:
缺点:
倒排索引:
优点:
缺点:
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的 字段(Field),类似于数据库中的列。
索引(Index),就是相同类型的文档集合。
例如:
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
1.3.3 mysql和elasticsearch
两者的概念对比:
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。