当前位置:   article > 正文

通义千问AI模型对接飞书机器人-模型配置(2-1)_飞书接入通义千问

飞书接入通义千问

一 背景

根据业务或者使用场景搭建自定义的智能ai模型机器人,可以较少我们人工回答的沟通成本,而且可以更加便捷的了解业务需求给出大家设定的业务范围的回答,目前基于阿里云的通义千问模型研究。

二 模型研究

参考阿里云帮助文档

https://help.aliyun.com/document_detail/2784263.html

https://help.aliyun.com/document_detail/2784278.html?spm=a2c4g.2779977.0.0.41c247904gVRRu

https://help.aliyun.com/zh/model-studio/user-guide/model-tools/?spm=a2c4g.11186623.0.0.451d5f17l5DF7U

1.通过阿里云百炼平台构建我们的应用模型

2.搭建我们的数据中心&知识库

3.创建应用,关联知识库文档做模型

1、模型概览

模型服务模型名称模型描述备注
通义千问qwen-longqwen-long是在通义千问针对超长上下文处理场景的大语言模型,支持中文、英文等不同语言输入,支持最长1000万tokens(约1500万字或1.5万页文档)的超长上下文对话。配合同步上线的文档服务,可支持word、pdf、markdown、epub、mobi等多种文档格式的解析和对话。
qwen-turbo通义千问超大规模语言模型,支持中文、英文等不同语言输入。百炼平台支持,智能思考度偏低响应较快
qwen-plus通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。百炼平台支持,兼顾智能思考跟响应的
qwen-max通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

2、AI应用步骤搭建

Step 1:数据管理-导入数据

 

Step 2:创建知识索引

选择导入数据到知识库

 获取知识索引ID,支持与百炼Assistant API结合使用,支持RAG和插件的组合调用;

 查看切割文档

Step 3:创建应用

进入我的应用后,点击新增应用。然后在应用配置中,进行以下几步操作:

  1. 选择模型。目前仅支持qwen-max模型,后续将支持更多的模型。同时,也可以支持设置模型内容生成的相关参数,如temperature等。

  2. 开启“知识检索增强”。

  3. 选择知识库,即在Step2中创建的知识索引。

  4. 点击“保存并发布”按钮。

 

4、测试AI应用

4.1 简单问题

4.2、自定义插件

在某些场景下,我们除了需要根据文档回答问题之外,还需要根据我们自定义的内容给出答案,例如查询公司某些业务的数据项,指标项等,这些三方ai无法清除,那么我们就可以通过自定义插件。

 创建自定义插件

 

 5 SDK对接

1、获取应用appid apikey

2、对接的地址

5.1、普通请求
  1. @RequestMapping(value = "/ask/test")
  2. public AssistantResp ask(@RequestBody AssistantReq req) {
  3. long l = System.currentTimeMillis();
  4. log.info("ask start={} message={}", l, req.getMessage());
  5. try {
  6. if (req.getMessage() == null || req.getMessage().trim().length() == 0) {
  7. return AssistantResp.builder().message("请输入问题").build();
  8. }
  9. ApplicationParam param = ApplicationParam.builder()
  10. .apiKey("sk-&&&&&&&&")
  11. .appId("f8a%%%%%%%%%%%%%%")
  12. .prompt(req.getMessage())
  13. .sessionId(req.getSessionId())
  14. .temperature(0.5F)
  15. .build();
  16. Application application = new Application();
  17. ApplicationResult result = application.call(param);
  18. log.info("result={}", JSONUtil.toJsonStr(result));
  19. AssistantResp ask = AssistantResp.builder().message(result.getOutput().getText()).build();
  20. log.info("请求耗时:{}", System.currentTimeMillis() - l);
  21. log.info("ask end={},message={}", System.currentTimeMillis(), ask.getMessage());
  22. return ask;
  23. } catch (Exception e) {
  24. return AssistantResp.builder().message("系统繁忙,请稍后再试").build();
  25. }
  26. }
5.2 流式响应
  1. @RequestMapping(value = "/stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
  2. public ResponseEntity<StreamingResponseBody> stream(@RequestBody AssistantReq req) {
  3. try {
  4. ApplicationParam param = ApplicationParam.builder()
  5. .apiKey("sk-&&&&&&&&&&")
  6. .appId("**************")
  7. .prompt(req.getMessage())
  8. .incrementalOutput(true)
  9. .build();
  10. Application application = new Application();
  11. Flowable<ApplicationResult> resultFlowable = application.streamCall(param);
  12. StreamingResponseBody responseBody = outputStream -> {
  13. resultFlowable.blockingForEach(data -> {
  14. String content = data.getOutput().getText();
  15. log.info("content={}",content);
  16. outputStream.write(content.getBytes());
  17. outputStream.flush(); // 确保数据立即发送
  18. }
  19. );
  20. };
  21. return ResponseEntity.ok().body(responseBody);
  22. } catch (NoApiKeyException e) {
  23. e.printStackTrace();
  24. } catch (InputRequiredException e) {
  25. e.printStackTrace();
  26. }
  27. return ResponseEntity.ok().body(null);
  28. }
5.3 多轮会话
  1. public void answer(String askStr,String tenantKey,String openId) throws Exception {
  2. //通过openId 获取 sessionId
  3. String sessionId = map.get(openId);
  4. log.info("askStr start={}",askStr);
  5. ApplicationParam param = ApplicationParam.builder()
  6. .apiKey("sk-b**********")
  7. .appId("f**************")
  8. .prompt(askStr)
  9. .sessionId(sessionId)
  10. .build();
  11. log.info("param={}",JSONUtil.toJsonStr(param));
  12. Application application = new Application();
  13. ApplicationResult result = application.call(param);
  14. if(result.getOutput().getSessionId()!=null){
  15. map.put(openId,result.getOutput().getSessionId());
  16. }
  17. String text = result.getOutput().getText();
  18. }

下一篇:通义千问AI模型对接飞书机器人-集成飞书机器人(2-2)-CSDN博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/884737
推荐阅读
相关标签
  

闽ICP备14008679号