赞
踩
身处信息爆炸时代,如何从海量信息中获取准确全面的搜索结果,并以更直观、可读的方式呈现出来是大家期待达成的目标。传统的搜索增强技术受限于训练文本数量、质量等问题,对于复杂或多义词查询效果不佳,更无法满足 ChatGPT 等大语言模型应用带来的大规模、高并发的复杂关联查询需求。
在此背景下,悦数图数据库率先实现了与 Llama Index、LangChain 等大语言模型框架的深度适配并在行业内首次提出了 Graph RAG(基于图技术的检索增强)的概念,利用知识图谱结合大语言模型(LLM)为搜索引擎提供更全面的上下文信息,可以帮助用户以更低成本获得更智能、更精准的搜索结果。目前,悦数图数据库推出的这项技术在与向量数据库结合的领域也获得了相当不错的效果。
今天我们就一起来了解下什么是 Graph RAG 以及它与其他 RAG 技术的对比,也欢迎搜索「悦数图数据库」官网,通过 Demo 体验直观感受这一功能~
缺少训练数据,文本理解不足
在传统的搜索引擎中,检索结果通常是基于关键词的匹配。而随着用户对搜索精确度和词汇联想能力要求的提高,传统的搜索结果往往难以满足用户的实际需求,尤其是在处理复杂的问题和长尾查询时,效果会明显降低。
为了解决这类问题,RAG 搜索增强技术应运而生。RAG (Retrieval-Augmented Generation),指的是通过 RAG 模型来对搜索结果进行增强的过程。具体来说,它是将检索技术和语言生成技术相结合来增强生成过程的一种技术,可以帮助传统搜索引擎生成更加准确、相关和多样化的信息来满足用户的需求。
而为了使搜索结果更精准,RAG 技术仍然面临训练数据和文本理解的挑战:
训练数据:RAG 技术需要大量的数据和计算资源来训练和生成模型,尤其是在处理多语言和复杂任务时,但是互联网上文本的质量和准确性是有限的,训练数据的不足会直接影响生成内容的质量
文本理解:RAG 需要理解查询的意图,但是对于复杂的查询或者多义词查询,RAG 可能会出现歧义或不确定性,从而影响生成的质量
因此,如何找到更强大的检索增强技术,以更高效率获得更符合搜索者的预期的搜索结果的问题就显得更迫在眉睫。
基于知识图谱的检索增强技术
「Graph RAG」是由悦数图数据率先提出的概念,它是一种基于知识图谱的检索增强技术,通过构建图模型的知识表达,将实体和关系之间的联系用图的形式进行展示,然后利用大语言模型 LLM(Large Language Model)进行检索增强。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。