当前位置:   article > 正文

基于OpenCV与Keras的停车场车位自动识别系统

基于OpenCV与Keras的停车场车位自动识别系统

本项目旨在利用计算机视觉技术和深度学习算法,实现对停车场车位状态的实时自动识别。通过摄像头监控停车场内部,系统能够高效准确地辨认车位是否被占用,为车主提供实时的空闲车位信息,同时为停车场管理者提供智能化的车位管理工具。该系统结合了OpenCV的强大图像处理能力与Keras的易用性,便于快速构建和部署。

技术栈:

  • OpenCV:用于图像的预处理,包括视频捕获、图像处理(如灰度转换、滤波、边缘检测等)以及ROI(感兴趣区域)的选取,为深度学习模型提供高质量的输入。
  • Keras:基于TensorFlow的高级API,用于搭建和训练深度学习模型。项目中,可能采用预训练模型(如VGGNet、ResNet等)进行迁移学习,通过微调模型来适应车位识别任务,或者从零开始构建卷积神经网络(CNN)模型进行车位状态分类。

项目流程:

  1. 数据收集与预处理:首先,通过摄像头录制停车场视频,从中截取包含车位的画面,人工标注车位状态(如空闲或占用)。接着,对图像进行归一化、增强等预处理,创建训练和验证数据集。

  2. 模型训练:使用Keras构建深度学习模型,加载预处理后的数据集进行训练。训练过程中,可能涉及调整超参数、优化器选择、损失函数配置等,以达到理想的分类性能。

  3. 模型验证与优化:在验证集上评估模型性能,根据准确率、召回率等指标调整模型结构或参数,进行模型优化。

  4. 实时检测与应用:将训练好的模型集成到OpenCV中,实现实时视频流处理。系统不断捕获停车场的视频帧,进行图像处理后,通过模型预测车位状态。识别结果以可视化方式展示,如在视频流中标记车位为空闲或占用,并可进一步集成到停车场管理系统,实现车位引导、计费等功能。

特色与优势:

  • 实时性:系统能够实时监控车位状态,及时更新信息,提高停车场的运营效率。
  • 准确性:深度学习模型具有强大的特征学习能力,即使在复杂光照、遮挡等条件下也能保持较高识别准确率。
  • 易部署与扩展:基于OpenCV和Keras的方案易于开发和调试,且模型可根据新数据持续优化,便于后续维护和功能升级。
  • 智能化管理:为停车场管理者提供精准的车位占用情况,有助于优化停车资源分配,提升用户体验。

总结: 此项目通过融合OpenCV的图像处理能力和Keras构建的深度学习模型,实现了对停车场车位状态的自动识别,是智能交通系统和智慧城市应用中的一个重要组成部分,具有广泛的应用前景和社会价值。

  1. from __future__ import division # 改变 Python 2 中除法操作符 / 的默认行为,使其表现得像 Python 3 中的除法操作符,结果会保留小数部分
  2. import matplotlib.pyplot as plt # 用于创建图表和可视化数据的 Python 库
  3. import cv2
  4. import os, glob # glob文件名匹配的模块
  5. import numpy as np
  6. from PIL import Image
  7. from keras.applications.imagenet_utils import preprocess_input
  8. from keras.models import load_model
  9. from keras.preprocessing import image
  10. from Parking import Parking
  11. import pickle # 序列化和反序列化对象的标准模块
  12. cwd = os.getcwd() # 获取当前工作目录
  13. def img_process(test_images, park):
  14. # 过滤背景,低于lower_red和高于upper_red的部分分别编程0,lower_red~upper_red之间的值编程255
  15. # map 函数用于将一个函数应用到可迭代对象的每个元素,并返回结果
  16. # 通过 list 函数将其转换为列表
  17. white_yellow_images = list(map(park.select_rgb_white_yellow,test_images))
  18. park.show_images(white_yellow_images)
  19. # 转灰度图
  20. gray_images = list(map(park.convert_gray_scale, white_yellow_images))
  21. park.show_images(gray_images)
  22. # 进行边缘检测
  23. edge_images = list(map(lambda image: park.detect_edges(image),gray_images))
  24. park.show_images(edge_images)
  25. # 根据需要设定屏蔽区域
  26. roi_images = list(map(park.select_region, edge_images))
  27. park.show_images(roi_images)
  28. # 霍夫变换,得出直线
  29. list_of_lines= list(map(park.hough_line, roi_images))
  30. # zip 函数来同时迭代 test_images 和 list_of_lines 中的元素
  31. line_images = []
  32. for image,lines in zip(test_images,list_of_lines):
  33. line_images.append(park.draw_lines(image,lines))
  34. park.show_images(line_images)
  35. rect_images = []
  36. rect_coords = [] # 列矩形
  37. for image,lines in zip(test_images, list_of_lines):
  38. # 过滤部分直线,对直线进行排序,得出每一列的起始点和终止点,并将列矩形画出来
  39. new_image,rects = park.identify_blocks(image,lines)
  40. rect_images.append(new_image)
  41. rect_coords.append(rects)
  42. park.show_images(rect_images)
  43. delineated = []
  44. spot_pos = []
  45. for image,rects in zip(test_images, rect_coords):
  46. # 在图上将停车位画出来,并返回字典{坐标:车位序号}
  47. new_image,spot_dict = park.draw_parking(image,rects)
  48. delineated.append(new_image)
  49. spot_pos.append(spot_dict)
  50. park.show_images(delineated)
  51. final_spot_dict = spot_pos[1]
  52. print(len(final_spot_dict))
  53. with open('spot_dict.pickle','wb') as handle:
  54. pickle.dump(final_spot_dict,handle,property==pickle.HIGHEST_PROTOCOL)
  55. park.save_images_for_cnn(test_images[0],final_spot_dict)
  56. return final_spot_dict
  57. def keras_model(weights_path):
  58. model = load_model(weights_path)
  59. return model
  60. def img_test(test_image,final_spot_dict,model,class_dictionary):
  61. for i in range (len(test_images)):
  62. predicted_images = park.predict_on_image(test_images[i],final_spot_dict,model,class_dictionary)
  63. def video_test(video_name,final_spot_dict,model,class_dictionary):
  64. name = video_name
  65. cap = cv2.VideoCapture(name)
  66. park.predict_on_video(name,final_spot_dict,model,class_dictionary,ret=True)
  67. if __name__ == '__main__':
  68. test_images = [plt.imread(path) for path in glob.glob('test_images/*.jpg')]
  69. weights_path = 'car1.h5'
  70. video_name = 'parking_video.mp4'
  71. class_dictionary = {}
  72. class_dictionary[0] = 'empty'
  73. class_dictionary[1] = 'occupied'
  74. park = Parking()
  75. park.show_image(test_images)
  76. final_spot_dict = img_process(test_images, park)
  77. model = keras_model(weights_path)
  78. img_test(test_images,final_spot_dict,model,class_dictionary)
  79. video_test(video_name,final_spot_dict,model,class_dictionary)

parking py

  1. import matplotlib.pyplot as plt
  2. import cv2
  3. import os,glob
  4. import numpy as np
  5. class Parking:
  6. def show_images(self, images, cmap=None):
  7. cols = 2
  8. rows = (len(images) + 1)//cols # //为整除运算符
  9. plt.figure(figsize=(15,12)) # 创建一个图形窗口,并指定其大小为 15x12 英寸
  10. for i,image in enumerate(images):
  11. plt.subplot(rows, cols, i+1) # 在当前图形窗口中创建一个子图,i+1 是因为子图的编号是从 1 开始的
  12. # 检查图像的维度,如果图像是二维的(灰度图像),则将颜色映射设置为灰度,否则保持传入的 cmap 参数不变
  13. cmap = 'gray' if len(image.shape)==2 else cmap
  14. plt.imshow(image, cmap=cmap)
  15. plt.xticks([]) # 去除 x 轴和 y 轴的刻度标签
  16. plt.yticks([])
  17. plt.tight_layout(pad=0,h_pad=0,w_pad=0) # 调整子图之间的间距
  18. plt.show()
  19. def cv_show(self, name, img):
  20. cv2.imshow(name, img)
  21. cv2.waitKey(0)
  22. cv2.destroyAllWindows()
  23. def select_rgb_white_yellow(self,image):
  24. # 过滤掉背景
  25. lower = np.uint8([120,120,120])
  26. upper = np.uint8([255,255,255])
  27. # 低于lower_red和高于upper_red的部分分别编程0,lower_red~upper_red之间的值编程255,相当于过滤背景
  28. white_mask = cv2.inRange(image,lower,upper)
  29. self.cv_show('white_mask',white_mask)
  30. # 与操作
  31. masked = cv2.bitwise_and(image, image, mask=white_mask)
  32. self.cv_show('masked',masked)
  33. return masked
  34. def convert_gray_scale(selfself,image):
  35. return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  36. # 提取图像中的边缘信息
  37. # 返回的是一个二值图像,其中边缘点被标记为白色(255),而非边缘点被标记为黑色(0
  38. def detect_edges(self, image, low_threshole=50, high_threshold=200):
  39. return cv2.Canny(image, low_threshole, high_threshold)
  40. def filter_region(self, image, vertices):
  41. # 剔除掉不需要的地方
  42. mask = np.zeros_like(image) # 创建和原图一样大的图,置零
  43. if len(mask.shape)==2: # 是否为一张灰度图
  44. cv2.fillPoly(mask, vertices, 255) # 使用顶点vertices在mask上填充多边形,并置为255白色
  45. self.cv_show('mask',mask)
  46. return cv2.bitwise_and(image,mask)
  47. def select_region(self, image):
  48. # 手动选择区域
  49. # 首先,通过顶点定义多边形。
  50. rows, cols = image.shape[:2] # h和w
  51. pt_1 = [cols*0.05, rows*0.09]
  52. pt_2 = [cols*0.05, rows*0.70]
  53. pt_3 = [cols*0.30, rows*0.55]
  54. pt_4 = [cols*0.6, rows*0.15]
  55. pt_5 = [cols*0.90, rows*0.15]
  56. pt_6 = [cols*0.90, rows*0.90]
  57. vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]],dtype=np.int32)
  58. point_img = image.copy()
  59. point_img = cv2.cvtColor(point_img, cv2.COLOR_BGR2GRAY)
  60. for point in vertices[0]:
  61. cv2.circle(point_img,(point[0], point[1]), 10, (0,0,255), 4)
  62. self.cv_show('point_img',point_img)
  63. return self.filter_region(image, vertices)
  64. # 霍夫变换,得出直线
  65. def hough_line(self,image):
  66. # 检测输入图像中的直线,并返回检测到的直线的端点坐标
  67. # 输入的图像需要是边缘检测后的结果
  68. # minLineLength(线的最短长度,比这个短的都被忽略)和MaxLineCap(两条直线之间的最大间隔,小于辞职,认为是一条直线)
  69. # rho以像素为单位的距离分辨率,通常设置为 1 像素
  70. # thrta角度精度
  71. # threshod直线交点数量阈值。只有累加器中某个点的投票数高于此阈值,才被认为是一条直线。
  72. return cv2.HoughLinesP(image, rho=0.1, thrta=np.pi/10, threshold=15,minLineLength=9,maxLineGap=4)
  73. # 过滤霍夫变换检测到的直线
  74. def draw_lines(self, image, lines, color=[255,0,0], thickness=2, make_copy=True):
  75. if make_copy:
  76. image = np.copy(image)
  77. cleaned = []
  78. for line in lines:
  79. for x1,y1,x2,y2 in line:
  80. if abs(y2-y1) <= 1 and abs(x2-x1) >= 25 and abs(x2-x1) <= 55:
  81. cleaned.append((x1,y1,x2,y2))
  82. cv2.line(image, (x1,y1), (x2,y2), color, thickness)
  83. print(" No lines detected: ", len(cleaned))
  84. return image
  85. # 过滤部分直线,对直线进行排序,得出每一列的起始点和终止点,并将列矩形画出来
  86. def identify_blocks(self, image, lines, make_copy=True):
  87. if make_copy:
  88. new_image = np.copy(image)
  89. # step1: 过滤部分直线
  90. cleaned = []
  91. for line in lines:
  92. for x1,y1,x2,y2 in line:
  93. if abs(y2-y1) <= 1 and abs(x2-x1) >= 25 and abs(x2-x1)<= 55:
  94. cleaned.append((x1,y1,x2,y2))
  95. # step2: 对直线按照 起始点的x和y坐标 进行排序
  96. import operator # 可以使用其中的各种函数来进行操作,例如比较、算术
  97. list1 = sorted(cleaned, key=operator.itemgetter(0,1)) # 从列表的每个元素中获取索引为01的值,然后将这些值用作排序的依据
  98. # step3: 找到多个列,相当于每列是一排车
  99. clusters = {} # 列数:对应该列有哪些车位线
  100. dIndex = 0
  101. clus_dist = 10
  102. for i in range(len(list1) - 1):
  103. distance = abs(list1[i+1][0] - list1[i][0]) # 根据前后两组车位线的x1距离
  104. if distance <= clus_dist:
  105. if not dIndex in clusters.keys(): clusters[dIndex] = []
  106. clusters[dIndex].append(list1[i])
  107. clusters[dIndex].append(list1[i + 1])
  108. else:
  109. dIndex += 1
  110. # step4: 得到每一列的四个坐标
  111. rects = {} # 每一列的四个角的坐标
  112. i = 0
  113. for key in clusters:
  114. all_list = clusters[key]
  115. # 将列表 all_list 转换为一个集合set,去重
  116. # {(10, 20, 30, 40), (20, 30, 40, 50)} 转为 [(10, 20, 30, 40), (20, 30, 40, 50)]
  117. cleaned = list(set(all_list))
  118. if len(cleaned) > 5:
  119. cleaned = sorted(cleaned, key=lambda tup: tup[1]) # 按y1进行排序
  120. avg_y1 = cleaned[0][1] # 第一条线段的起始点 y 坐标
  121. avg_y2 = cleaned[-1][1] # 最后一条线段的起始点 y 坐标,即整个区域的上下边界
  122. avg_x1 = 0
  123. avg_x2 = 0
  124. for tup in cleaned: # 累加起始点和结束点的 x 坐标
  125. avg_x1 += tup[0]
  126. avg_x2 += tup[2]
  127. avg_x1 = avg_x1/len(cleaned) # 取平均起始点和结束点x坐标值
  128. avg_x2 = avg_x2/len(cleaned)
  129. rects[i] = (avg_x1, avg_y1,avg_x2,avg_y2)
  130. i += 1
  131. print("Num Parking Lanes:", len(rects))
  132. # step5: 把列矩形画出来
  133. buff = 7
  134. for key in rects:
  135. tup_topLeft = (int(rects[key][0] - buff), int(rects[key][1])) # x1-buff, y1
  136. tup_botRight = (int(rects[key][2] + buff), int(rects[key][3])) # x2+buff, y2
  137. cv2.rectangle(new_image, tup_topLeft, tup_botRight,(0,255,0),3)
  138. return new_image,rects
  139. # 在图上将停车位画出来,并返回字典{坐标:车位序号}
  140. def draw_parking(self, image, rects, make_copy=True, color=[255,0,0], thickness=2, save=True):
  141. if make_copy:
  142. new_image = np.copy(image)
  143. gap = 15.5 # 一个车位大致高度
  144. spot_dict = {} # 字典:一个车位对应一个位置
  145. tot_spots = 0 # 总车位
  146. # 微调
  147. adj_y1 = {0: 20, 1: -10, 2: 0, 3: -11, 4: 28, 5: 5, 6: -15, 7: -15, 8: -10, 9: -30, 10: 9, 11: -32}
  148. adj_y2 = {0: 30, 1: 50, 2: 15, 3: 10, 4: -15, 5: 15, 6: 15, 7: -20, 8: 15, 9: 15, 10: 0, 11: 30}
  149. adj_x1 = {0: -8, 1: -15, 2: -15, 3: -15, 4: -15, 5: -15, 6: -15, 7: -15, 8: -10, 9: -10, 10: -10, 11: 0}
  150. adj_x2 = {0: 0, 1: 15, 2: 15, 3: 15, 4: 15, 5: 15, 6: 15, 7: 15, 8: 10, 9: 10, 10: 10, 11: 0}
  151. for key in rects:
  152. tup = rects[key]
  153. x1 = int(tup[0] + adj_x1[key])
  154. x2 = int(tup[2] + adj_x2[key])
  155. y1 = int(tup[1] + adj_y1[key])
  156. y2 = int(tup[3] + adj_y2[key])
  157. cv2.rectangle(new_image,(x1,y1), (x2,y2), (0,255,0), 2)
  158. num_splits = int(abs(y2-y1)//gap) # 一列总共有多少个车位
  159. for i in range (0,num_splits+1): # 画车位框
  160. y = int(y1 + i*gap)
  161. cv2.rectangle(new_image, (x1,y), (x2,y2), (0,255,0), 2)
  162. if key > 0 and key < len(rects)-1:
  163. # 竖直线
  164. x = int((x1+x2)/2)
  165. cv2.line(new_image,(x,y1),(x,y2),color,thickness)
  166. # 计算数量
  167. if key == 0 or key == (len(rects) - 1): # 对于第一列和最后一列(只有一排车位)
  168. tot_spots += num_splits + 1
  169. else:
  170. tot_spots += 2*(num_splits + 1) # 一列有两排车位
  171. # 字典对应好
  172. if key == 0 or key == (len(rects) - 1): # 对于第一列和最后一列(只有一排车位)
  173. for i in range(0, num_splits+1):
  174. cur_len = len(spot_dict)
  175. y = int(y1 + i*gap)
  176. spot_dict[(x1,y,x2,y+gap)] = cur_len + 1
  177. else:
  178. for i in range(0, num_splits+1):
  179. cur_len = len(spot_dict)
  180. y = int(y1 + i*gap)
  181. x = int((x1+x2)/2)
  182. spot_dict[(x1,y,x,y+gap)] = cur_len + 1
  183. spot_dict[(x,y,x2,y+gap)] = cur_len + 2
  184. print("total parking spaces: ", tot_spots, cur_len)
  185. if save:
  186. filename = 'with_parking.jpg'
  187. cv2.imwrite(filename, new_image)
  188. return new_image, spot_dict
  189. # 根据传入的起始点和终止点坐标列表画框
  190. def assign_spots_map(self, image, spot_dict, make_copy= True, color=[255,0,0], thickness=2):
  191. if make_copy:
  192. new_image = np.copy(image)
  193. for spot in spot_dict.keys():
  194. (x1,y1,x2,y2) = spot
  195. cv2.rectangle(new_image,(int(x1),int(y1)), (int(x2),int(y2)), color, thickness)
  196. return new_image
  197. # 遍历字典{坐标,车位号}在图片中截取对应坐标的图像,按车位号保存下来
  198. def save_images_for_cnn(self, image, spot_dict, folder_name= 'cnn_data'):
  199. for spot in spot_dict.keys():
  200. (x1,y1,x2,y2) = spot
  201. (x1,y1,x2,y2) = (int(x1),int(y1),int(x2),int(y2))
  202. # 裁剪
  203. spot_img= image[y1:y2, x1:x2]
  204. spot_img = cv2.resize(spot_img, (0,0), fx=2.0, fy=2.0)
  205. spot_id = spot_dict[spot]
  206. filename = 'spot' + str(spot_id) + '.jpg'
  207. print(spot_img.shape, filename, (x1,x2,y1,y2))
  208. cv2.imwrite(os.path.join(folder_name, filename), spot_img)
  209. # 将图像进行归一化,并将其转换成一个符合深度学习模型输入要求的四维张量,进行训练
  210. def make_prediction(self, image, model, class_dictionary):
  211. # 预处理
  212. img = image/255. # 将图像的像素值归一化到 [0, 1] 的范围内
  213. # 将图像转换成一个四维张量
  214. image = np.expend_dims(img, axis = 0)
  215. # 将图片调用keras算法进行预测
  216. class_predicted = model.predict(image) # 得出预测结果
  217. inID = np.argmax(class_predicted[0]) # 找到数组中最大值所在的索引
  218. label = class_dictionary[inID]
  219. return label
  220. def predict_on_image(self, image, spot_dict, model, class_dictionary,
  221. make_copy=True, color=[0,255,0], alpha=0.5):
  222. if make_copy:
  223. new_image = np.copy(image)
  224. overlay = np.copy(image)
  225. self.cv_show('new_image',new_image)
  226. cnt_empty = 0
  227. all_spots = 0
  228. for spot in spot_dict.keys():
  229. all_spots += 1
  230. (x1, y1, x2, y2) = spot
  231. (x1, y1, x2, y2) = (int(x1), int(y1), int(x2), int(y2))
  232. spot_img = image[y1:y2, x1:x2]
  233. spot_img = cv2.resize(spot_img, (48,48))
  234. label = self.make_prediction(spot_img, model, class_dictionary)
  235. if label== 'empty':
  236. cv2.rectangle(overlay, (int(x1), int(y1)), (int(x2), int(y2)), color, -1)
  237. cnt_empty += 1
  238. cv2.addWeighted(overlay, alpha, new_image, 1-alpha, 0, new_image)
  239. cv2.putText(new_image, "Available: %d spots" %cnt_empty, (30,95),
  240. cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),2)
  241. cv2.putText(new_image, "Total: %d spots" %all_spots, (30,125),
  242. cv2.FONT_HERSHEY_SIMPLEX, 0.7,(255,255,255),2)
  243. save = False
  244. if save:
  245. filename = 'with_parking.jpg'
  246. cv2.imwrite(filename, new_image)
  247. self.cv_show('new_image',new_image)
  248. return new_image
  249. def predict_on_video(self, video_name, final_spot_dict, model, class_dictionary, ret=True):
  250. cap= cv2.VideoCapture(video_name)
  251. count = 0
  252. while ret:
  253. ret, image = cap.read()
  254. count += 1
  255. if count == 5:
  256. count == 0
  257. new_image = np.copy(image)
  258. overlay = np.copy(image)
  259. cnt_empty = 0
  260. all_spots = 0
  261. color = [0,255,0]
  262. alpha = 0.5
  263. for spot in final_spot_dict.keys():
  264. all_spots += 1
  265. (x1,y1,x2,y2) = spot
  266. (x1,y1,x2,y2) = (int(x1), int(y1), int(x2), int(y2))
  267. spot_img = image[y1:y2, x1:x2]
  268. spot_img = cv2.resize(spot_img, (48,48))
  269. label = self.make_prediction(spot_img, model, class_dictionary)
  270. if label == 'empty':
  271. cv2.rectangle(overlay, (int(x1),int(y1)), (int(x2),int(y2)), color, -1)
  272. cnt_empty += 1
  273. cv2.addWeighted(overlay, alpha, new_image, 1-alpha, 0, new_image)
  274. cv2.putText(new_image,"Available: %d spots" % cnt_empty,(30,95),
  275. cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255),2)
  276. cv2.putText(new_image, "Total: %d spots" %all_spots, (30,125),
  277. cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
  278. cv2.imshow('frame',new_image)
  279. # 检测用户是否按下了 'q'
  280. if cv2.waitKey(10) & 0xFF == ord('q'): # 通过 & 0xFF 操作,可以确保只获取ASCII码的最后一个字节
  281. break
  282. cv2.destroyWindow()
  283. cap.release()

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/寸_铁/article/detail/852598
推荐阅读
相关标签
  

闽ICP备14008679号