赞
踩
转载请注明出处,谢谢。
#什么是Perplexity(困惑度)?
在信息论中,perplexity(困惑度)用来度量一个概率分布或概率模型预测样本的好坏程度。它也可以用来比较两个概率分布或概率模型。(译者:应该是比较两者在预测样本上的优劣)低困惑度的概率分布模型或概率模型能更好地预测样本。
1.概率分布的困惑度
2.概率模型的困惑度
3.每个分词的困惑度
##1.概率分布的困惑度
定义离散概率分布的困惑度如下:
2
H
(
p
)
=
2
−
∑
x
p
(
x
)
log
2
p
(
x
)
{\displaystyle 2^{H(p)}=2^{-\sum _{x}p(x)\log _{2}p(x)}}
2H(p)=2−∑xp(x)log2p(x)
其中H§是概率分布p的熵,x是样本点。因此一个随机变量X的困惑度是定义在X的概率分布上的(X所有"可能"取值为x的部分)。(译者:x不能包含零测集的点,不然p(x)logp(x)没定义)
一个特殊的例子是k面均匀骰子的概率分布,它的困惑度恰好是k。一个拥有k困惑度的随机变量有着和k面均匀骰子一样多的不确定性,并且可以说该随机变量有着k个困惑度的取值(k-ways perplexed)。(在有限样本空间离散随机变量的概率分布中,均匀分布有着最大的熵)
困惑度有时也被用来衡量一个预测问题的难易程度。但这个方法不总是精确的。例如:在概率分布B(1,P=0.9)中,即取得1的概率是0.9,取得0的概率是0.1。可以计算困惑度是:
2 − 0.9 l o g 2 0.9 − 0.1 l o g 2 0.1 = 1.38 2^{-0.9 log_2 0.9 - 0.1 log_2 0.1}= 1.38 2−0.9log20.9−0.1log20.1=1.38
同时自然地,我们预测下一样本点的策略将是:预测其取值为1,那么我们预测正确的概率是0.9。而困惑度的倒数是1/1.38=0.72而不是0.9。(但当我们考虑k面骰子上的均匀分布时,困惑度是k,困惑度的倒数是1/k,正好是预测正确的概率)
困惑度是信息熵的指数。
##2.概率模型的困惑度
用一个概率模型q去估计真实概率分布p,那么可以通过测试集中的样本来定义这个概率模型的困惑度。
b − 1 N ∑ i = 1 N log b q ( x i ) b^{{-{\frac {1}{N}}\sum _{{i=1}}^{N}\log _{b}q(x_{i})}} b−N1∑i=1Nlogbq(xi)
其中测试样本x1, x2, …, xN是来自于真实概率分布p的观测值,b通常取2。因此,低的困惑度表示q对p拟合的越好,当模型q看到测试样本时,它会不会“感到”那么“困惑”。
我们指出,指数部分是交叉熵。
H ( p ^ , q ) = − ∑ x p ^ ( x ) log 2 q ( x ) H({\hat {p}},q)=-\sum _{x}{\hat {p}}(x)\log _{2}q(x) H(p^,q)=−x∑p^(x)log2q(x)
其中 p ^ {\hat {p}} p^ 表示我们对真实分布下样本点x出现概率的估计。比如用p(x)=n/N
##3.每个分词的困惑度
在自然语言处理中,困惑度是用来衡量语言概率模型优劣的一个方法。一个语言概率模型可以看成是在整过句子或者文段上的概率分布。(译者:例如每个分词位置上有一个概率分布,这个概率分布表示了每个词在这个位置上出现的概率;或者每个句子位置上有一个概率分布,这个概率分布表示了所有可能句子在这个位置上出现的概率)
比如,i这个句子位置上的概率分布的信息熵可能是190,或者说,i这个句子位置上出现的句子平均要用190 bits去编码,那么这个位置上的概率分布的困惑度就是2(190)。(译者:相当于投掷一个2(190)面筛子的不确定性)通常,我们会考虑句子有不同的长度,所以我们会计算每个分词上的困惑度。比如,一个测试集上共有1000个单词,并且可以用7.95个bits给每个单词编码,那么我们可以说这个模型上每个词有2^(7.95)=247 困惑度。相当于在每个词语位置上都有投掷一个247面骰子的不确定性。
在Brown corpus (1 million words of American English of varying topics and genres) 上报告的最低的困惑度就是247per word,使用的是一个trigram model(三元语法模型)。在一个特定领域的语料中,常常可以得到更低的困惑度。
要注意的是,这个模型用的是三元语法。直接预测下一个单词是"the"的正确率是7%。但如果直接应用上面的结果,算出来这个预测是正确的概率是1/247=0.4%,这就错了。(译者:不是说算出来就一定是0.4%,而是说这样算本身是错的)因为直接预测下一个词是”the“的话,我们是在使用一元语法,而247是来源于三元语法的。当我们在使用三元语法的时候,会考虑三元语法的统计数据,这样做出来的预测会不一样并且通常有更好的正确率。
翻译:https://en.wikipedia.org/wiki/Perplexity
作者:microstrong
转载请注明出处,谢谢。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。