当前位置:   article > 正文

基于llama3-8B-instruct的调用部署以及lora微调

llama3-8b-instruct

1 Llama-3-8B-Instruct 基于FastApi 部署调用

环境准备
在 Autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.1.0–>3.10(ubuntu22.04)–>12.1。 接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install fastapi==0.110.2
pip install uvicorn==0.29.0
pip install requests==2.31.0
pip install modelscope==1.11.0
pip install transformers==4.40.0
pip install accelerate==0.29.3
fastapi==0.110.2 langchain==0.1.16 modelscope==1.11.0 
streamlit==1.33.0 torch==2.1.2+cu121 transformers==4.40.0 uvicorn==0.29.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载,模型大小为 15GB,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct', 
cache_dir='/root/autodl-tmp', revision='master')
  • 1
  • 2
  • 3
  • 4
  • 5

image.png
代码准备:
在 /root/autodl-tmp 路径下新建 api.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import uvicorn
import json
import datetime
import torch

# 设置设备参数
DEVICE = "cuda"  # 使用CUDA
DEVICE_ID = "0"  # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE  # 组合CUDA设备信息

# 清理GPU内存函数
def torch_gc():
    if torch.cuda.is_available():  # 检查是否可用CUDA
        with torch.cuda.device(CUDA_DEVICE):  # 指定CUDA设备
            torch.cuda.empty_cache()  # 清空CUDA缓存
            torch.cuda.ipc_collect()  # 收集CUDA内存碎片

# 构建 chat 模版
def bulid_input(prompt, history=[]):
    system_format='<|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>'
    user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|>'
    assistant_format='<|start_header_id|>assistant<|end_header_id|>\n\n{content}<|eot_id|>\n'
    history.append({'role':'user','content':prompt})
    prompt_str = ''
    # 拼接历史对话
    for item in history:
        if item['role']=='user':
            prompt_str+=user_format.format(content=item['content'])
        else:
            prompt_str+=assistant_format.format(content=item['content'])
    return prompt_str

# 创建FastAPI应用
app = FastAPI()

# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):
    global model, tokenizer  # 声明全局变量以便在函数内部使用模型和分词器
    json_post_raw = await request.json()  # 获取POST请求的JSON数据
    json_post = json.dumps(json_post_raw)  # 将JSON数据转换为字符串
    json_post_list = json.loads(json_post)  # 将字符串转换为Python对象
    prompt = json_post_list.get('prompt')  # 获取请求中的提示
    history = json_post_list.get('history', [])  # 获取请求中的历史记录

    messages = [
        # {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]

    # 调用模型进行对话生成
    input_str = bulid_input(prompt=prompt, history=history)
    input_ids = tokenizer.encode(input_str, add_special_tokens=False, return_tensors='pt').cuda()

    generated_ids = model.generate(
        input_ids=input_ids, max_new_tokens=512, do_sample=True,
        top_p=0.9, temperature=0.5, repetition_penalty=1.1, eos_token_id=tokenizer.encode('<|eot_id|>')[0]
    )
    outputs = generated_ids.tolist()[0][len(input_ids[0]):]
    response = tokenizer.decode(outputs)
    response = response.strip().replace('<|eot_id|>', "").replace('<|start_header_id|>assistant<|end_header_id|>\n\n', '').strip() # 解析 chat 模版


    now = datetime.datetime.now()  # 获取当前时间
    time = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间为字符串
    # 构建响应JSON
    answer = {
        "response": response,
        "status": 200,
        "time": time
    }
    # 构建日志信息
    log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
    print(log)  # 打印日志
    torch_gc()  # 执行GPU内存清理
    return answer  # 返回响应

# 主函数入口
if __name__ == '__main__':
    # 加载预训练的分词器和模型
    model_name_or_path = '/root/autodl-tmp/LLM-Research/Meta-Llama-3-8B-Instruct'
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16).cuda()

    # 启动FastAPI应用
    # 用6006端口可以将autodl的端口映射到本地,从而在本地使用api
    uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)  # 在指定端口和主机上启动应用
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89

Api 部署:
在终端输入以下命令启动 api 服务:

cd /root/autodl-tmp
python api.py
  • 1
  • 2

加载完毕后出现如下信息说明成功。
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:

curl -X POST "http://127.0.0.1:6006" \
     -H 'Content-Type: application/json' \
     -d '{"prompt": "你好"}'
  • 1
  • 2
  • 3

得到的返回值如下所示:

{
  "response": "
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/寸_铁/article/detail/964577
推荐阅读
相关标签