当前位置:   article > 正文

ChatGLM系列四:P-Tuning微调_chatglm.cpp p-tuning

chatglm.cpp p-tuning

P-Tuning,参考ChatGLM官方代码 ,是一种针对于大模型的soft-prompt方法
P-Tuning: 在输入的embedding层前,将prompt转换为可学习的额外一层embedding层.

P-Tuning,仅对大模型的Embedding加入新的参数。
P-Tuning-V2,将大模型的Embedding和每一层前都加上新的参数。
当prefix_projection为True时,为P-Tuning-V2方法,在大模型的Embedding和每一层前都加上新的参数;为False时,为P-Tuning方法,仅在大模型的Embedding上新的参数。
在这里插入图片描述

下载代码

git clone https://github.com/liucongg/ChatGLM-Finetuning
  • 1

环境配置

cpm_kernels==1.0.11
deepspeed==0.9.0
numpy==1.24.2
peft==0.3.0
sentencepiece==0.1.96
tensorboard==2.11.0
tensorflow==2.13.0
torch==1.13.1+cu116
tqdm==4.64.1
transformers==4.27.1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

(1)、ChatGLM单卡训练

CUDA_VISIBLE_DEVICES=0 deepspeed --master_port 520 train.py \
                --train_path data/spo_0.json \
                --model_name_or_path ChatGLM-6B \
                --per_device_train_batch_size 1 \
                --max_len 768 \
                --max_src_len 512 \
                --learning_rate 1e-4 \
                --weight_decay 0.1 \
                --num_train_epochs 2 \
                --gradient_accumulation_steps 4 \
                --warmup_ratio 0.1 \
                --mode glm \
                --train_type ptuning \
                --seed 1234 \
                --ds_file ds_zero2_no_offload.json \
                --gradient_checkpointing \
                --show_loss_step 10 \
                --pre_seq_len 16 \
                --prefix_projection True \
                --output_dir ./output-glm
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

(2)、ChatGLM四卡训练

通过CUDA_VISIBLE_DEVICES控制具体哪几块卡进行训练,如果不加该参数,表示使用运行机器上所有卡进行训练

CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --master_port 520 train.py \
                --train_path data/spo_0.json \
                --model_name_or_path ChatGLM-6B \
                --per_device_train_batch_size 1 \
                --max_len 1560 \
                --max_src_len 1024 \
                --learning_rate 1e-4 \
                --weight_decay 0.1 \
                --num_train_epochs 2 \
                --gradient_accumulation_steps 4 \
                --warmup_ratio 0.1 \
                --mode glm \
                --train_type ptuning \
                --seed 1234 \
                --ds_file ds_zero2_no_offload.json \
                --gradient_checkpointing \
                --show_loss_step 10 \
                --pre_seq_len 16 \
                --prefix_projection True \
                --output_dir ./output-glm
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

(3)、ChatGLM2单卡训练

CUDA_VISIBLE_DEVICES=0 deepspeed --master_port 520 train.py \
                --train_path data/spo_0.json \
                --model_name_or_path ChatGLM2-6B \
                --per_device_train_batch_size 1 \
                --max_len 1560 \
                --max_src_len 1024 \
                --learning_rate 1e-4 \
                --weight_decay 0.1 \
                --num_train_epochs 2 \
                --gradient_accumulation_steps 4 \
                --warmup_ratio 0.1 \
                --mode glm2 \
                --train_type ptuning \
                --seed 1234 \
                --ds_file ds_zero2_no_offload.json \
                --gradient_checkpointing \
                --show_loss_step 10 \
                --pre_seq_len 16 \
                --prefix_projection True \
                --output_dir ./output-glm2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

(4)、ChatGLM2四卡训练

通过CUDA_VISIBLE_DEVICES控制具体哪几块卡进行训练,如果不加该参数,表示使用运行机器上所有卡进行训练

CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --master_port 520 train.py \
                --train_path data/spo_0.json \
                --model_name_or_path ChatGLM2-6B \
                --per_device_train_batch_size 1 \
                --max_len 1560 \
                --max_src_len 1024 \
                --learning_rate 1e-4 \
                --weight_decay 0.1 \
                --num_train_epochs 2 \
                --gradient_accumulation_steps 4 \
                --warmup_ratio 0.1 \
                --mode glm2 \
                --train_type ptuning \
                --seed 1234 \
                --ds_file ds_zero2_no_offload.json \
                --gradient_checkpointing \
                --show_loss_step 10 \
                --pre_seq_len 16 \
                --prefix_projection True \
                --output_dir ./output-glm2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

(5)、耗费显存资源占用对比—PT方法:对比ChaGLM和ChaGLM2

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/260367
推荐阅读
相关标签
  

闽ICP备14008679号