当前位置:   article > 正文

逻辑回归_什么是逻辑回归?

什么是逻辑回归?

逻辑回归的定义

简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。 注意,这里用的是“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。该结果往往用于和其他特征值加权求和,而非直接相乘。

那么逻辑回归与线性回归是什么关系呢?

逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。 因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

假设函数(Hypothesis function)

首先我们要先介绍一下Sigmoid函数,也称为逻辑函数(Logistic function):

  • g(z)= \frac{1}{1+e^{-z}}

其函数曲线如下:



从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1。它的这个特性对于解决二分类问题十分重要

逻辑回归的假设函数形式如下:

  • h_\theta(x) = g(\theta^T x), g(z)= \frac{1}{1+e^{-z}}

所以:

  • h_\theta(x)= \frac{1}{1+e^{-\theta^Tx}}

其中 x 是我们的输入, \theta 为我们要求取的参数。

一个机器学习的模型,实际上是把决策函数限定在某一组条件下,这组限定条件就决定了模型的假设空间。当然,我们还希望这组限定条件简单而合理。而逻辑回归模型所做的假设是:

  • P(y=1|x;\theta) =g(\theta^Tx)= \frac{1}{1+e^{-\theta^Tx}}

这个函数的意思就是在给定 x

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/279445
推荐阅读
相关标签
  

闽ICP备14008679号