赞
踩
手写体数字识别是计算机视觉中最常用的图像分类任务,让计算机识别出给定图片中的手写体数字(0-9共10个数字)。由于手写体风格差异很大,因此手写体数字识别是具有一定难度的任务。
我们采用常用的手写数字识别数据集:MNIST数据集。
我们可以从这里下载手写数字识别数据集:MNIST
MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。
这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28×28像素)。
LeNet-5虽然提出的时间比较早,但它是一个非常成功的神经网络模型。
基于LeNet-5的手写数字识别系统在20世纪90年代被美国很多银行使用,用来识别支票上面的手写数字。
导入数据集代码如下:
import json
import gzip
# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:3000], train_set[1][:3000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
为了方便观察训练过程,我们划分训练集3000张。
Length of train/dev/test set:3000/200/200
数据集第一张图片展示:
代码:
import numpy as np
import matplotlib.pyplot as plt
import torch
import PIL.Image as Image
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')
import torchvision.transforms as transforms # 数据预处理 transforms = transforms.Compose([transforms.Resize(32),transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5])]) import random from torch.utils.data import Dataset,DataLoader class MNIST_dataset(Dataset): def __init__(self, dataset, transforms, mode='train'): self.mode = mode self.transforms =transforms self.dataset = dataset def __getitem__(self, idx): # 获取图像和标签 image, label = self.dataset[0][idx], self.dataset[1][idx] image, label = np.array(image).astype('float32'), int(label) image = np.reshape(image, [28,28]) image = Image.fromarray(image.astype('uint8'), mode='L') image = self.transforms(image) return image, label def __len__(self): return len(self.dataset[0]) # 加载 mnist 数据集 train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train') test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test') dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
这里的LeNet-5和原始版本有4点不同:
网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为32×32=1024,输出对应10个类别的得分。
自定义的Conv2D和Pool2D算子中包含多个for循环,所以运算速度比较慢。
import torch.nn.functional as F import torch.nn as nn class Model_LeNet(nn.Module): def __init__(self, in_channels, num_classes=10): super(Model_LeNet, self).__init__() # 卷积层:输出通道数为6,卷积核大小为5×5 self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5) # 汇聚层:汇聚窗口为2×2,步长为2 self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2) # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1 self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1) # 汇聚层:汇聚窗口为2×2,步长为2 self.pool4 = nn.AvgPool2d(kernel_size=(2, 2), stride=2) # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5 self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1) # 全连接层:输入神经元为120,输出神经元为84 self.linear6 = nn.Linear(120, 84) # 全连接层:输入神经元为84,输出神经元为类别数 self.linear7 = nn.Linear(84, num_classes) def forward(self, x): # C1:卷积层+激活函数 output = F.relu(self.conv1(x)) # S2:汇聚层 output = self.pool2(output) # C3:卷积层+激活函数 output = F.relu(self.conv3(output)) # S4:汇聚层 output = self.pool4(output) # C5:卷积层+激活函数 output = F.relu(self.conv5(output)) # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW] output = torch.squeeze(output, dim=3) output = torch.squeeze(output, dim=2) # F6:全连接层 output = F.relu(self.linear6(output)) # F7:全连接层 output = self.linear7(output) return output
torch.nn.Conv2d();torch.nn.MaxPool2d();torch.nn.avg_pool2d()
class Torch_LeNet(nn.Module): def __init__(self, in_channels, num_classes=10): super(Torch_LeNet, self).__init__() # 卷积层:输出通道数为6,卷积核大小为5*5 self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5) # 汇聚层:汇聚窗口为2*2,步长为2 self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5 self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) # 汇聚层:汇聚窗口为2*2,步长为2 self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2) # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5 self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5) # 全连接层:输入神经元为120,输出神经元为84 self.linear6 = nn.Linear(in_features=120, out_features=84) # 全连接层:输入神经元为84,输出神经元为类别数 self.linear7 = nn.Linear(in_features=84, out_features=num_classes) def forward(self, x): # C1:卷积层+激活函数 output = F.relu(self.conv1(x)) # S2:汇聚层 output = self.pool2(output) # C3:卷积层+激活函数 output = F.relu(self.conv3(output)) # S4:汇聚层 output = self.pool4(output) # C5:卷积层+激活函数 output = F.relu(self.conv5(output)) # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW] output = torch.squeeze(output, dim=3) output = torch.squeeze(output, dim=2) # F6:全连接层 output = F.relu(self.linear6(output)) # F7:全连接层 output = self.linear7(output) return output
测试LeNet-5模型,构造一个形状为 [1,1,32,32]的输入数据送入网络,观察每一层特征图的形状变化。
# 这里用np.random创建一个随机数组作为输入数据 inputs = np.random.randn(*[1, 1, 32, 32]) inputs = inputs.astype('float32') # 创建Model_LeNet类的实例,指定模型名称和分类的类别数目 model = Model_LeNet(in_channels=1, num_classes=10) print(model) # 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层 print(model.named_parameters()) x = torch.tensor(inputs) print(x) for item in model.children(): # item是LeNet类中的一个子层 # 查看经过子层之后的输出数据形状 item_shapex = 0 names = [] parameter = [] for name in item.named_parameters(): names.append(name[0]) parameter.append(name[1]) item_shapex += 1 try: x = item(x) except: # 如果是最后一个卷积层输出,需要展平后才可以送入全连接层 x = x.reshape([x.shape[0], -1]) x = item(x) if item_shapex == 2: # 查看卷积和全连接层的数据和参数的形状, # 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b print(item, x.shape, parameter[0].shape, parameter[1].shape) else: # 汇聚层没有参数 print(item, x.shape)
结果:
测试两个网络的运算速度的代码如下:
import time # 这里用np.random创建一个随机数组作为测试数据 inputs = np.random.randn(*[1,1,32,32]) inputs = inputs.astype('float32') x = torch.tensor(inputs) # 创建Model_LeNet类的实例,指定模型名称和分类的类别数目 model = Model_LeNet(in_channels=1, num_classes=10) # 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目 torch_model = Torch_LeNet(in_channels=1, num_classes=10) # 计算Model_LeNet类的运算速度 model_time = 0 for i in range(60): strat_time = time.time() out = model(x) end_time = time.time() # 预热10次运算,不计入最终速度统计 if i < 10: continue model_time += (end_time - strat_time) avg_model_time = model_time / 50 print('Model_LeNet speed:', avg_model_time, 's') # 计算Torch_LeNet类的运算速度 torch_model_time = 0 for i in range(60): strat_time = time.time() torch_out = torch_model(x) end_time = time.time() # 预热10次运算,不计入最终速度统计 if i < 10: continue torch_model_time += (end_time - strat_time) avg_torch_model_time = torch_model_time / 50 print('Torch_LeNet speed:', avg_torch_model_time, 's')
测试结果:
我们发现,自定义算子慢于torch算子,但是相差也不算很大,可以忽略不计,但是torch的性能表现确实比自定义算子的性能表现要好。
令两个网络加载同样的权重,测试一下两个网络的输出结果是否一致。
# 这里用np.random创建一个随机数组作为测试数据 inputs = np.random.randn(*[1,1,32,32]) inputs = inputs.astype('float32') x = torch.tensor(inputs) # 创建Model_LeNet类的实例,指定模型名称和分类的类别数目 model = Model_LeNet(in_channels=1, num_classes=10) # 获取网络的权重 params = model.state_dict() # 自定义Conv2D算子的bias参数形状为[out_channels, 1] # torch API中Conv2D算子的bias参数形状为[out_channels] # 需要进行调整后才可以赋值 for key in params: if 'bias' in key: params[key] = params[key].squeeze() # 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目 torch_model = Torch_LeNet(in_channels=1, num_classes=10) # 将Model_LeNet的权重参数赋予给Torch_LeNet模型,保持两者一致 torch_model.load_state_dict(params) # 打印结果保留小数点后6位 torch.set_printoptions(6) # 计算Model_LeNet的结果 output = model(x) print('Model_LeNet output: ', output) # 计算Torch_LeNet的结果 torch_output = torch_model(x) print('Torch_LeNet output: ', torch_output)
运算结果比较:
我们使用torchsummary统计参数量和计算量:
代码如下:
from torchsummary import summary
model = Torch_LeNet(in_channels=1, num_classes=10)
params_info = summary(model, (1, 32, 32))
print(params_info)
在飞桨中,还可以使用paddle.flopsAPI自动统计计算量。pytorch可以么?
回答:可以,在torch中,我们可以使用torchstat统计计算量。
from torchstat import stat
# 导入模型,输入一张输入图片的尺寸
stat(model, (1, 32,32))
结果展示:
使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。
用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。
我们选择训练6个epoch,然后给出RunnerV3和Accuracy的code:
class RunnerV3(object): def __init__(self, model, optimizer, loss_fn, metric, **kwargs): self.model = model self.optimizer = optimizer self.loss_fn = loss_fn self.metric = metric # 只用于计算评价指标 # 记录训练过程中的评价指标变化情况 self.dev_scores = [] # 记录训练过程中的损失函数变化情况 self.train_epoch_losses = [] # 一个epoch记录一次loss self.train_step_losses = [] # 一个step记录一次loss self.dev_losses = [] # 记录全局最优指标 self.best_score = 0 def train(self, train_loader, dev_loader=None, **kwargs): # 将模型切换为训练模式 self.model.train() # 传入训练轮数,如果没有传入值则默认为0 num_epochs = kwargs.get("num_epochs", 0) # 传入log打印频率,如果没有传入值则默认为100 log_steps = kwargs.get("log_steps", 100) # 评价频率 eval_steps = kwargs.get("eval_steps", 0) # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams" save_path = kwargs.get("save_path", "best_model.pdparams") custom_print_log = kwargs.get("custom_print_log", None) # 训练总的步数 num_training_steps = num_epochs * len(train_loader) if eval_steps: if self.metric is None: raise RuntimeError('Error: Metric can not be None!') if dev_loader is None: raise RuntimeError('Error: dev_loader can not be None!') # 运行的step数目 global_step = 0 # 进行num_epochs轮训练 for epoch in range(num_epochs): # 用于统计训练集的损失 total_loss = 0 for step, data in enumerate(train_loader): X, y = data # 获取模型预测 logits = self.model(X) loss = self.loss_fn(logits, y) # 默认求mean total_loss += loss # 训练过程中,每个step的loss进行保存 self.train_step_losses.append((global_step, loss.item())) if log_steps and global_step % log_steps == 0: print( f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}") # 梯度反向传播,计算每个参数的梯度值 loss.backward() if custom_print_log: custom_print_log(self) # 小批量梯度下降进行参数更新 self.optimizer.step() # 梯度归零 optimizer.zero_grad() # 判断是否需要评价 if eval_steps > 0 and global_step > 0 and \ (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)): dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step) print(f"[Evaluate] dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}") # 将模型切换为训练模式 self.model.train() # 如果当前指标为最优指标,保存该模型 if dev_score > self.best_score: self.save_model(save_path) print( f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}") self.best_score = dev_score global_step += 1 # 当前epoch 训练loss累计值 trn_loss = (total_loss / len(train_loader)).item() # epoch粒度的训练loss保存 self.train_epoch_losses.append(trn_loss) print("[Train] Training done!") # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度 @torch.no_grad() def evaluate(self, dev_loader, **kwargs): assert self.metric is not None # 将模型设置为评估模式 self.model.eval() global_step = kwargs.get("global_step", -1) # 用于统计训练集的损失 total_loss = 0 # 重置评价 self.metric.reset() # 遍历验证集每个批次 for batch_id, data in enumerate(dev_loader): X, y = data # 计算模型输出 logits = self.model(X) # 计算损失函数 loss = self.loss_fn(logits, y).item() # 累积损失 total_loss += loss # 累积评价 self.metric.update(logits, y) dev_loss = (total_loss / len(dev_loader)) dev_score = self.metric.accumulate() # 记录验证集loss if global_step != -1: self.dev_losses.append((global_step, dev_loss)) self.dev_scores.append(dev_score) return dev_score, dev_loss # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度 @torch.no_grad() def predict(self, x, **kwargs): # 将模型设置为评估模式 self.model.eval() # 运行模型前向计算,得到预测值 logits = self.model(x) return logits def save_model(self, save_path): torch.save(self.model.state_dict(), save_path) def load_model(self, model_path): state_dict = torch.load(model_path) self.model.load_state_dict(state_dict) import torch #新增准确率计算函数 def accuracy(preds, labels): """ 输入: - preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量 - labels:真实标签,shape=[N, 1] 输出: - 准确率:shape=[1] """ print(preds) # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务 if preds.shape[1] == 1: # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0 # 使用'torch.can_cast'将preds的数据类型转换为float32类型 preds = torch.can_cast((preds>=0.5).dtype,to=torch.float32) else: # 多分类时,使用'torch.argmax'计算最大元素索引作为类别 preds = torch.argmax(preds,dim=1) torch.can_cast(preds.dtype,torch.int32) return torch.mean(torch.tensor((preds == labels), dtype=torch.float32)) class Accuracy(): def __init__(self): """ 输入: - is_logist: outputs是logist还是激活后的值 """ # 用于统计正确的样本个数 self.num_correct = 0 # 用于统计样本的总数 self.num_count = 0 self.is_logist = True def update(self, outputs, labels): """ 输入: - outputs: 预测值, shape=[N,class_num] - labels: 标签值, shape=[N,1] """ # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务 if outputs.shape[1] == 1: # 二分类 outputs = torch.squeeze(outputs, axis=-1) if self.is_logist: # logist判断是否大于0 preds = torch.can_cast((outputs>=0), dtype=torch.float32) else: # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0 preds = torch.can_cast((outputs>=0.5), dtype=torch.float32) else: # 多分类时,使用'paddle.argmax'计算最大元素索引作为类别 preds = torch.argmax(outputs, dim=1).int() # 获取本批数据中预测正确的样本个数 labels = torch.squeeze(labels, dim=-1) batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy() batch_count = len(labels) # 更新num_correct 和 num_count self.num_correct += batch_correct self.num_count += batch_count def accumulate(self): # 使用累计的数据,计算总的指标 if self.num_count == 0: return 0 return self.num_correct / self.num_count def reset(self): # 重置正确的数目和总数 self.num_correct = 0 self.num_count = 0 def name(self): return "Accuracy" import torch.optim as opti # 学习率大小 lr = 0.1 # 批次大小 batch_size = 64 # 加载数据 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) dev_loader = DataLoader(dev_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) # 定义LeNet网络 # 自定义算子实现的LeNet-5 model = Model_LeNet(in_channels=1, num_classes=10) # 飞桨API实现的LeNet-5 # model = Paddle_LeNet(in_channels=1, num_classes=10) # 定义优化器 optimizer = opti.SGD(model.parameters(), 0.2) # 定义损失函数 loss_fn = F.cross_entropy # 定义评价指标 metric = Accuracy() # 实例化 RunnerV3 类,并传入训练配置。 runner = RunnerV3(model, optimizer, loss_fn, metric) # 启动训练 log_steps = 15 eval_steps = 15 runner.train(train_loader, dev_loader, num_epochs=6, log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams")
结果展示:
[Train] epoch: 0/6, step: 0/282, loss: 2.29864
[Train] epoch: 0/6, step: 15/282, loss: 2.23512
[Evaluate] dev score: 0.35000, dev loss: 2.22403
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.35000
:60: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy()
[Train] epoch: 0/6, step: 30/282, loss: 2.26119
[Evaluate] dev score: 0.09000, dev loss: 2.31535
[Train] epoch: 0/6, step: 45/282, loss: 1.87482
[Evaluate] dev score: 0.31500, dev loss: 1.96644
[Train] epoch: 1/6, step: 60/282, loss: 1.49791
[Evaluate] dev score: 0.32500, dev loss: 1.90903
[Train] epoch: 1/6, step: 75/282, loss: 1.08951
[Evaluate] dev score: 0.43000, dev loss: 1.97639
[Evaluate] best accuracy performence has been updated: 0.35000 --> 0.43000
[Train] epoch: 1/6, step: 90/282, loss: 0.72709
[Evaluate] dev score: 0.72000, dev loss: 0.62929
[Evaluate] best accuracy performence has been updated: 0.43000 --> 0.72000
[Train] epoch: 2/6, step: 105/282, loss: 1.01030
[Evaluate] dev score: 0.58000, dev loss: 1.11268
[Train] epoch: 2/6, step: 120/282, loss: 0.30258
[Evaluate] dev score: 0.84000, dev loss: 0.36762
[Evaluate] best accuracy performence has been updated: 0.72000 --> 0.84000
[Train] epoch: 2/6, step: 135/282, loss: 0.27759
[Evaluate] dev score: 0.87500, dev loss: 0.38257
[Evaluate] best accuracy performence has been updated: 0.84000 --> 0.87500
[Train] epoch: 3/6, step: 150/282, loss: 0.37689
[Evaluate] dev score: 0.81500, dev loss: 0.50451
[Train] epoch: 3/6, step: 165/282, loss: 0.39598
[Evaluate] dev score: 0.90500, dev loss: 0.26139
[Evaluate] best accuracy performence has been updated: 0.87500 --> 0.90500
[Train] epoch: 3/6, step: 180/282, loss: 0.20255
[Evaluate] dev score: 0.89500, dev loss: 0.26024
[Train] epoch: 4/6, step: 195/282, loss: 0.08575
[Evaluate] dev score: 0.92000, dev loss: 0.16601
[Evaluate] best accuracy performence has been updated: 0.90500 --> 0.92000
[Train] epoch: 4/6, step: 210/282, loss: 0.16293
[Evaluate] dev score: 0.95000, dev loss: 0.14370
[Evaluate] best accuracy performence has been updated: 0.92000 --> 0.95000
[Train] epoch: 4/6, step: 225/282, loss: 0.20410
[Evaluate] dev score: 0.95000, dev loss: 0.14841
[Train] epoch: 5/6, step: 240/282, loss: 0.09400
[Evaluate] dev score: 0.94000, dev loss: 0.15105
[Train] epoch: 5/6, step: 255/282, loss: 0.30644
[Evaluate] dev score: 0.96000, dev loss: 0.17032
[Evaluate] best accuracy performence has been updated: 0.95000 --> 0.96000
[Train] epoch: 5/6, step: 270/282, loss: 0.20965
[Evaluate] dev score: 0.87500, dev loss: 0.31949
[Evaluate] dev score: 0.94000, dev loss: 0.12479
[Train] Training done!
可以看出的是,最好的精确度performence展示已经达到了96%,在验证集上的准确度也达到了94%,取得了不错的效果。
我们看一下训练过程中的误差变化和精确率变化:
#可视化误差 def plot(runner, fig_name): plt.figure(figsize=(10,5)) plt.subplot(1,2,1) train_items = runner.train_step_losses[::30] train_steps=[x[0] for x in train_items] train_losses = [x[1] for x in train_items] plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss") if runner.dev_losses[0][0]!=-1: dev_steps=[x[0] for x in runner.dev_losses] dev_losses = [x[1] for x in runner.dev_losses] plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss") #绘制坐标轴和图例 plt.ylabel("loss", fontsize='x-large') plt.xlabel("step", fontsize='x-large') plt.legend(loc='upper right', fontsize='x-large') plt.subplot(1,2,2) #绘制评价准确率变化曲线 if runner.dev_losses[0][0]!=-1: plt.plot(dev_steps, runner.dev_scores, color='#E20079', linestyle="--", label="Dev accuracy") else: plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores, color='#E20079', linestyle="--", label="Dev accuracy") #绘制坐标轴和图例 plt.ylabel("score", fontsize='x-large') plt.xlabel("step", fontsize='x-large') plt.legend(loc='lower right', fontsize='x-large') plt.savefig(fig_name) plt.show() runner.load_model('best_model.pdparams') plot(runner, 'cnn-loss1.pdf')
可视化结果:
测试准确率:
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
# 获取测试集中第一条数 X, label = next(iter(test_loader)) logits = runner.predict(X) # 多分类,使用softmax计算预测概率 pred = F.softmax(logits,dim=1) print(pred.shape) # 获取概率最大的类别 pred_class = torch.argmax(pred[2]).numpy() print(pred_class) label = label[2].numpy() # 输出真实类别与预测类别 print("The true category is {} and the predicted category is {}".format(label, pred_class)) # 可视化图片 plt.figure(figsize=(2, 2)) image, label = test_set[0][2], test_set[1][2] image= np.array(image).astype('float32') image = np.reshape(image, [28,28]) image = Image.fromarray(image.astype('uint8'), mode='L') plt.imshow(image) plt.savefig('cnn-number2.pdf')
实现结果:
使用前馈神经网络实现MNIST识别代码:
from torchvision import datasets,transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import torchvision from torch import nn import numpy as np import torch transformation =transforms.Compose([ transforms.ToTensor() #转换到Tensor,并且转换为0-1之间,将channel 放到第一个纬度 ]) train_ds = datasets.MNIST('data/',train = True,transform = transformation,download = True) test_ds = datasets.MNIST('data/',train = False,transform = transformation,download = True) # len(train_ds) # len(test_ds) train_loader = DataLoader(train_ds,batch_size =64 ,shuffle = True,num_workers = 16) test_loader = DataLoader(test_ds,batch_size =256 ,shuffle = False,num_workers = 16) class Model(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(28*28,128) self.linear2 = nn.Linear(128,64) self.linear3 = nn.Linear(64,10) def forward(self,input): x = input.view(-1,28*28) x = nn.functional.relu(self.linear1(x)) x = nn.functional.relu(self.linear2(x)) y = self.linear3(x) return y model = Model() loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(),lr=0.001) def accuracy(y_pred,y_true): y_pred = torch.argmax(y_pred,dim=1) acc = (y_pred==y_true).float().mean() return acc #测试集 def evaluate_testset(data_loader,model): acc_sum,loss_sum,total_example = 0.0,0.0,0 for x,y in data_loader: y_hat = model(x) acc_sum += (y_hat.argmax(dim=1)==y).sum().item() loss = loss_fn(y_hat,y) loss_sum += loss.item() total_example+=y.shape[0] return acc_sum/total_example,loss_sum #定义模型训练函数 def train(model,train_loader,test_loader,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None): train_ls = [] test_ls = [] for epoch in range(num_epochs): # 训练模型一共需要num_epochs个迭代周期 train_loss_sum, train_acc_num,total_examples = 0.0,0.0,0 for x, y in train_loader: # x和y分别是小批量样本的特征和标签 y_pred = model(x) loss = loss_fn(y_pred, y) #计算损失 optimizer.zero_grad() # 梯度清零 loss.backward() # 反向传播 optimizer.step() #梯度更新 total_examples += y.shape[0] train_loss_sum += loss.item() train_acc_num += (y_pred.argmax(dim=1)==y).sum().item() train_ls.append(train_loss_sum) test_acc,test_loss = evaluate_testset(test_loader,model) test_ls.append(test_loss) print('epoch %d, train_loss %.6f,test_loss %f,train_acc %.6f,test_acc %.6f'%(epoch+1, train_ls[epoch],test_ls[epoch],train_acc_num/total_examples,test_acc)) return num_epoch = 20 batch_size = 64 train(model,train_loader,test_loader,loss_fn,num_epoch,batch_size,params=model.parameters,lr=0.001,optimizer=optimizer)
训练结果示意:
参数量的对比:
对比结果发现,卷积神经网络的参数量只有6w,而前馈神经网络却有10w+的参数量,虽然前馈神经网络展现的性能比卷积神经网络好(也可能是因为我卷积神经网络的训练次数太少,具体再高的准确率大家可以自己尝试对比一下),但其5%的准确率却需要再加一倍的性能,这显然展现了卷积神经网络的优点,下面我们来对比一下浮点运算数:
我们得到的结果是卷积神经网络的计算量>前馈神经网络的计算量,但是为什么会这样呢?我查找了很多资料,各大博客和视频,没有找到具体相关的解释,我的理解是虽然卷积神经网络的参数量少于亲前馈神经网络,但是由于其层数的增多,导致计算量不可避免的增加,但是同等性能下,卷积神经网络肯定是优于前馈神经网络的。
C1:卷积层+激活函数
S2:汇聚层
C3:卷积层+激活函数
S4:汇聚层
今天基于torch使用Lenet实现手写数字识别,实验也写了好久,也和别人探讨了一些准确率低的问题所在,在只更改邱老师的paddle代码的时候,经常会出来准确率为10%的问题,也就是10张图片瞎猜一张的准确率,如下图:
在探讨问题的过程中,一开始我认为是学习率的影响因素,将学习率设置为0.1、0.2、1、2、5、10、20等发现准确率只提高了5个百分点,甚至只提升一个百分点,和别人探讨的过程中,我们发现在torch中,transform.Normalize的参数过大,Normalize是对数据做标准化处理的,如果参数设置为175.5和175.5的话,会导致均值处在175.5,方差在175.5内,由于我们使用的图片在transforms.ToTensor处理后,值均位于0-1之间,这就解释了为什么这个参数对于卷积神经网络的结果影响之大,顺便提一句,在Normalize中,均值反映了图像的亮度,均值越大说明图像亮度越大,反之越小;标准差反映了图像像素值与均值的离散程度,标准差越大说明图像的质量越好; 我们重新修改为mean = 0.5 和std = 0.5 才得到了这个94%的准确率,至于为什么没有到99%,大家可以自己尝试学习率的更改,我这里得到了一个差不多的准确率就没再调参,大家想要得到99%的准确率可以调这个代码的lr试一下,在这里哦~(模型训练5.3.3这一行,我设置的是0.2):
这就是今天的全部内容了。
前馈神经网络实现手写数字识别
transforms.Normalize,计算数据量大数据集的像素均值(mean)和标准差(std)
NNDL 实验5(上)
卷积神经网络 — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)
老师博客:
NNDL 实验六 卷积神经网络(3)LeNet实现MNIST
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。