赞
踩
(转自:https://www.cnblogs.com/shenxiaolin/p/8321722.html)
【Title】
WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation
【Abstract】Matrix approximation is one of the most effective methods for collaborative filtering-based recommender systems. However, the high computation complexity of matrix factorization on large datasets limits its scalability. Prior solutions have adopted co-clustering methods to partition a large matrix into a set of smaller submatrices, which can then be processed in parallel to improve scalability. The drawback is that the recommendation accuracy is lower as the submatrices only contain subsets of the user-item rating information. This paper presents WEMAREC, a weighted and ensemble matrix approximation method for accurate and scalable recommendation. It builds upon the intuition that (sub)matrices containing more frequent samples of certain user/item/rating tend to make more reliable rating predictions for these specific user/item/rating. WEMAREC consists of two important components: (1) a weighting strategy that is computed based on the rating distribution in each submatrix and applied to approximate a single matrix containing those submatrices; and (2) an ensemble strategy that leverages user-specific and item-specific rating distributions to combine the approximation matrices of multiple sets of co-clustering results. Evaluations using real-world datasets demonstrate that WEMAREC outperforms state-of-the-art matrix approximation methods in recommendation accuracy (0.5?11.9% on the MovieLens dataset and 2.2--13.1% on the Netflix dataset) with 3--10X improvement on scalability.
【Title】Effective Latent Models for Binary Feedback in Recommender Systems
【Abstract】In many collaborative filtering (CF) applications, latent approaches are the preferred model choice due to their ability to generate real-time recommendations efficiently. However, the majority of existing latent models are not designed for implicit binary feedback (views, clicks, plays etc.) and perform poorly on data of this type. Developing accurate models from implicit feedback is becoming increasingly important in CF since implicit feedback can often be collected at lower cost and in much larger quantities than explicit preferences. The need for accurate latent models for implicit data was further emphasized by the recently conducted Million Song Dataset Challenge organized by Kaggle. In this challenge, the results for the best latent model were orders of magnitude worse than neighbor-based approaches, and all the top performing teams exclusively used neighbor-based models. We address this problem and propose a new latent approach for binary feedback in CF. In our model, neighborhood similarity information is used to guide latent factorization and derive accurate latent representations. We show that even with simple factorization methods like SVD, our approach outperforms existing models and produces state-of-the-art results.
【Title】Personalized Recommendation via Parameter-Free Contextual Bandits
【Abstract】Personalized recommendation services have gained increasing popularity and attention in recent years as most useful information can be accessed online in real-time. Most online recommender systems try to address the information needs of users by virtue of both user and content information. Despite extensive recent advances, the problem of personalized recommendation remains challenging for at least two reasons. First, the user and item repositories undergo frequent changes, which makes traditional recommendation algorithms ineffective. Second, the so-called cold-start problem is difficult to address, as the information for learning a recommendation model is limited for new items or new users. Both challenges are formed by the dilemma of exploration and exploitation. In this paper, we formulate personalized recommendation as a contextual bandit problem to solve the exploration/exploitation dilemma. Specifically in our work, we propose a parameter-free bandit strategy, which employs a principled resampling approach called online bootstrap, to derive the distribution of estimated models in an online manner. Under the paradigm of probability matching, the proposed algorithm randomly samples a model from the derived distribution for every recommendation. Extensive empirical experiments on two real-world collections of web data (including online advertising and news recommendation) demonstrate the effectiveness of the proposed algorithm in terms of the click-through rate. The experimental results also show that this proposed algorithm is robust in the cold-start situation, in which there is no sufficient data or knowledge to tune the hyper-parameters.
一篇有关于预测用户的注意力模型
【Title】Inferring Searcher Attention by Jointly Modeling User Interactions and Content Salience
【Abstract】Modeling and predicting user attention is crucial for interpreting search behavior. The numerous applications include quantifying web search satisfaction, estimating search quality, and measuring and predicting online user engagement. While prior research has demonstrated the value of mouse cursor data and other interactions as a rough proxy of user attention, precisely predicting where a user is looking on a page remains a challenge, exacerbated in Web pages beyond the traditional search results. To improve attention prediction on a wider variety of Web pages, we propose a new way of modeling searcher behavior data by connecting the user interactions to the underlying Web page content. Specifically, we propose a principled model for predicting a searcher's gaze position on a page, that we call Mixture of Interactions and Content Salience (MICS). To our knowledge, our model is the first to effectively combine user interaction data, such as mouse cursor and scrolling positions, with the visual prominence, or salience, of the page content elements. Extensive experiments on multiple popular types of Web content demonstrate that the proposed MICS model significantly outperforms previous approaches to searcher gaze prediction that use only the interaction information. Grounding the observed interactions to the underlying page content provides a general and robust approach to user attention modeling, enabling more powerful tool for search behavior interpretation and ultimately search quality improvements.
【Title】Query to Knowledge: Unsupervised Entity Extraction from Shopping Queries using Adaptor Grammars
【Abstract】Web search queries provide a surprisingly large amount of information, which can be potentially organized and converted into a knowledgebase. In this paper, we focus on the problem of automatically identifying brand and product entities from a large collection of web queries in online shopping domain. We propose an unsupervised approach based on adaptor grammars that does not require any human annotation efforts nor rely on any external resources. To reduce the noise and normalize the query patterns, we introduce a query standardization step, which groups multiple search patterns and word orderings together into their most frequent ones. We present three different sets of grammar rules used to infer query structures and extract brand and product entities. To give an objective assessment of the performance of our approach, we conduct experiments on a large collection of online shopping queries and intrinsically evaluate the knowledgebase generated by our method qualitatively and quantitatively. In addition, we also evaluate our framework on extrinsic tasks on query tagging and chunking. Our empirical studies show that the knowledgebase discovered by our approach is highly accurate, has good coverage and significantly improves the performance on the external tasks.
【Title】Learning to Rank Features for Recommendation over Multiple Categories
【Abstract】Incorporating phrase-level sentiment analysis on users' textual reviews for recommendation has became a popular method due to its explainable property for latent features and high prediction accuracy. However, the inherent limitations of the existing model make it difficult to (1) effectively distinguish the features that are most interesting to users, (2) maintain the recommendation performance especially when the set of items is scaled up to multiple categories, and (3) model users' implicit feedbacks on the product features. In this paper, motivated by these shortcomings, we first introduce a tensor matrix factorization algorithm to Learn to Rank user Preferences based on Phrase-level sentiment analysis across Multiple categories (LRPPM for short), and then by combining this technique with Collaborative Filtering (CF) method, we propose a novel model called LRPPM-CF to boost the performance of recommendation. Thorough experiments on two real-world datasets demonstrate that our proposed model is able to improve the performance in the tasks of capturing users' interested features and item recommendation by about 17%-24% and 7%-13%, respectively, as compared with several state-of-the-art methods.
【Title】How Much Novelty is Relevant?: It Depends on Your Curiosity
【Abstract】Traditional recommendation systems (RS's) aim to recommend items that are relevant to the user's interest. Unfortunately, the recommended items will soon become too familiar to the user and hence fail to arouse her interest. Discovery-oriented recommendation systems (DORS's) complement accuracy with "discover utilities" (DU's) such as novelty and diversity and optimize the tradeoff between the DU's and accuracy of the recommendations. Unfortunately, DORS's ignore an important fact that different users have different appetites for DU's. That is, highly curious users can accept highly novel and diversified recommendations whereas conservative users would behave in the opposite manner. In this paper, we propose a curiosity-based recommendation system (CBRS) framework which generates recommendations with a personalized amount of DU's to fit the user's curiosity level. The major contribution of this paper is a computational model of user curiosity, called Probabilistic Curiosity Model (PCM), which is based on the curiosity arousal theory and Wundt curve in psychology research. In PCM, we model a user's curiosity with a curiosity distribution function learnt from the user's access history and compute a curiousness score for each item representing how curious the user is about the item. CBRS then selects items which are both relevant and have high curiousness score, bounded by the constraint that the amount of DU's fits the user's DU appetite. We use joint optimization and co-factorization approaches to incorporate the curiosity signal into the recommendations. Extensive experiments have been performed to evaluate the performance of CBRS against the baselines using a music dataset from last.fm. The results show that compared to the baselines CBRS not only provides more personalized recommendations that adapt to the user's curiosity level but also improves the recommendation accuracy.
【Title】Discrete Collaborative Filtering
【Abstract】We address the efficiency problem of Collaborative Filtering (CF) by hashing users and items as latent vectors in the form of binary codes, so that user-item affinity can be efficiently calculated in a Hamming space. However, existing hashing methods for CF employ binary code learning procedures that most suffer from the challenging discrete constraints. Hence, those methods generally adopt a two-stage learning scheme composed of relaxed optimization via discarding the discrete constraints, followed by binary quantization. We argue that such a scheme will result in a large quantization loss, which especially compromises the performance of large-scale CF that resorts to longer binary codes. In this paper, we propose a principled CF hashing framework called Discrete Collaborative Filtering (DCF), which directly tackles the challenging discrete optimization that should have been treated adequately in hashing. The formulation of DCF has two advantages: 1) the Hamming similarity induced loss that preserves the intrinsic user-item similarity, and 2) the balanced and uncorrelated code constraints that yield compact yet informative binary codes. We devise a computationally efficient algorithm with a rigorous convergence proof of DCF. Through extensive experiments on several real-world benchmarks, we show that DCF consistently outperforms state-of-the-art CF hashing techniques, e.g, though using only 8 bits, DCF is even significantly better than other methods using 128 bits.
【Title】Contextual Bandits in a Collaborative Environment
【Abstract】Contextual bandit algorithms provide principled online learning solutions to find optimal trade-offs between exploration and exploitation with companion side-information. They have been extensively used in many important practical scenarios, such as display advertising and content recommendation. A common practice estimates the unknown bandit parameters pertaining to each user independently. This unfortunately ignores dependency among users and thus leads to suboptimal solutions, especially for the applications that have strong social components.
In this paper, we develop a collaborative contextual bandit algorithm, in which the adjacency graph among users is leveraged to share context and payoffs among neighboring users while online updating. We rigorously prove an improved upper regret bound of the proposed collaborative bandit algorithm comparing to conventional independent bandit algorithms. Extensive experiments on both synthetic and three large-scale real-world datasets verified the improvement of our proposed algorithm against several state-of-the-art contextual bandit algorithms.
【Title】Collaborative Filtering Bandits
【Abstract】Classical collaborative filtering, and content-based filtering methods try to learn a static recommendation model given training data. These approaches are far from ideal in highly dynamic recommendation domains such as news recommendation and computational advertisement, where the set of items and users is very fluid. In this work, we investigate an adaptive clustering technique for content recommendation based on exploration-exploitation strategies in contextual multi-armed bandit settings. Our algorithm takes into account the collaborative effects that arise due to the interaction of the users with the items, by dynamically grouping users based on the items under consideration and, at the same time, grouping items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of preference patterns in the data in a way akin to collaborative filtering methods. We provide an empirical analysis on medium-size real-world datasets, showing scalability and increased prediction performance (as measured by click-through rate) over state-of-the-art methods for clustering bandits. We also provide a regret analysis within a standard linear stochastic noise setting.
【Title】Fast Matrix Factorization for Online Recommendation with Implicit Feedback
【Abstract】This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our implemented, open-source (https://github.com/hexiangnan/sigir16-eals) eALS consistently outperforms state-of-the-art implicit MF methods.
Short Research Paper
【Title】A Dynamic Recurrent Model for Next Basket Recommendation
【Abstract】Next basket recommendation becomes an increasing concern. Most conventional models explore either sequential transaction features or general interests of users. Further, some works treat users' general interests and sequential behaviors as two totally divided matters, and then combine them in some way for next basket recommendation. Moreover, the state-of-the-art models are based on the assumption of Markov Chains (MC), which only capture local sequential features between two adjacent baskets. In this work, we propose a novel model, Dynamic REcurrent bAsket Model (DREAM), based on Recurrent Neural Network (RNN). DREAM not only learns a dynamic representation of a user but also captures global sequential features among baskets. The dynamic representation of a specific user can reveal user's dynamic interests at different time, and the global sequential features reflect interactions of all baskets of the user over time. Experiment results on two public datasets indicate that DREAM is more effective than the state-of-the-art models for next basket recommendation.
Short Research Paper
【Title】Collaborative Ranking with Social Relationships for Top-N Recommendations
【Abstract】Recommendation systems have gained a lot of attention because of their importance for handling the unprecedentedly large amount of available content on the Web, such as movies, music, books, etc. Although Collaborative Ranking (CR) models can produce accurate recommendation lists, in practice several real-world problems decrease their ranking performance, such as the sparsity and cold start problems. Here, to account for the fact that the selections of social friends can leverage the recommendation accuracy, we propose SCR, a Social CR model. Our model learns personalized ranking functions collaboratively, using the notion of Social Reverse Height, that is, considering how well the relevant items of users and their social friends have been ranked at the top of the list. The reason that we focus on the top of the list is that users mainly see the top-N recommendations, and not the whole ranked list. In our experiments with a benchmark data set from Epinions, we show that our SCR model performs better than state-of-the-art CR models that either consider social relationships or focus on the ranking performance at the top of the list.
【Title】Multi-site User Behavior Modeling and Its Application in Video Recommendation
【Abstract】As online video service continues to grow in popularity, video content providers compete hard for more eyeball engagement. Some users visit multiple video sites to enjoy videos of their interest while some visit exclusively one site. However, due to the isolation of data, mining and exploiting user behaviors in multiple video websites remain unexplored so far. In this work, we try to model user preferences in six popular video websites with user viewing records obtained from a large ISP in China. The empirical study shows that users exhibit both consistent cross-site interests as well as site-specific interests. To represent this dichotomous pattern of user preferences, we propose a generative model of Multi-site Probabilistic Factorization (MPF) to capture both the cross-site as well as site-specific preferences. Besides, we discuss the design principle of our model by analyzing the sources of the observed site-specific user preferences, namely, site peculiarity and data sparsity. Through conducting extensive recommendation validation, we show that our MPF model achieves the best results compared to several other state-of-the-art factorization models with significant improvements of F-measure by 12.96%, 8.24% and 6.88%, respectively. Our findings provide insights on the value of integrating user data from multiple sites, which stimulates collaboration between video service providers.
【Title】Item Silk Road: Recommending Items from Information Domains to Social Users
【Abstract】Online platforms can be divided into information-oriented and social-oriented domains. The former refers to forums or E-commerce sites that emphasize user-item interactions, like Trip.com and Amazon; whereas the latter refers to social networking services (SNSs) that have rich user-user connections, such as Facebook and Twitter. Despite their heterogeneity, these two domains can be bridged by a few overlapping users, dubbed as bridge users. In this work, we address the problem of cross-domain social recommendation, i.e., recommending relevant items of information domains to potential users of social networks. To our knowledge, this is a new problem that has rarely been studied before.
Existing cross-domain recommender systems are unsuitable for this task since they have either focused on homogeneous information domains or assumed that users are fully overlapped. Towards this end, we present a novel Neural Social Collaborative Ranking (NSCR) approach, which seamlessly sews up the user-item interactions in information domains and user-user connections in SNSs. In the information domain part, the attributes of users and items are leveraged to strengthen the embedding learning of users and items. In the SNS part, the embeddings of bridge users are propagated to learn the embeddings of other non-bridge users. Extensive experiments on two real-world datasets demonstrate the effectiveness and rationality of our NSCR method.
【Title】Cross-Domain Recommendation via Clustering on Multi-Layer Graphs
【Abstract】Venue category recommendation is an essential application for the tourism and advertisement industries, wherein it may suggest attractive localities within close proximity to users' current location. Considering that many adults use more than three social networks simultaneously, it is reasonable to leverage on this rapidly growing multi-source social media data to boost venue recommendation performance. Another approach to achieve higher recommendation results is to utilize group knowledge, which is able to diversify recommendation output. Taking into account these two aspects, we introduce a novel cross-network collaborative recommendation framework C3R, which utilizes both individual and group knowledge, while being trained on data from multiple social media sources. Group knowledge is derived based on new cross-source user community detection approach, which utilizes both inter-source relationship and the ability of sources to complement each other. To fully utilize multi-source multi-view data, we process user-generated content by employing state-of-the-art text, image, and location processing techniques. Our experimental results demonstrate the superiority of our multi-source framework over state-of-the-art baselines and different data source combinations. In addition, we suggest a new approach for automatic construction of inter-network relationship graph based on the data, which eliminates the necessity of having pre-defined domain knowledge.
【Title】Optimizing Trade-offs Among Stakeholders in Real-Time Bidding by Incorporating Multimedia Metrics
【Abstract】Displaying banner advertisements (in short, ads) on webpages has usually been discussed as an Internet economics topic where a publisher uses auction models to sell an online user's page view to advertisers and the one with the highest bid can have her ad displayed to the user. This is also called real-time bidding (RTB) and the ad displaying process ensures that the publisher's benefit is maximized or there is an equilibrium in ad auctions. However, the benefits of the other two stakeholders - the advertiser and the user - have been rarely discussed. In this paper, we propose a two-stage computational framework that selects a banner ad based on the optimized trade-offs among all stakeholders. The first stage is still auction based and the second stage re-ranks ads by considering the benefits of all stakeholders. Our metric variables are: the publisher's revenue, the advertiser's utility, the ad memorability, the ad click-through rate (CTR), the contextual relevance, and the visual saliency. To the best of our knowledge, this is the first work that optimizes trade-offs among all stakeholders in RTB by incorporating multimedia metrics. An algorithm is also proposed to determine the optimal weights of the metric variables. We use both ad auction datasets and multimedia datasets to validate the proposed framework. Our experimental results show that the publisher can significantly improve the other stakeholders' benefits by slightly reducing her revenue in the short-term. In the long run, advertisers and users will be more engaged, the increased demand of advertising and the increased supply of page views can then boost the publisher's revenue.
【Abstract】We develop a probabilistic formulation giving rise to a formal version of heuristic k nearest-neighbor (kNN) collaborative filtering. Different independence assumptions in our scheme lead to user-based, item-based, normalized and non-normalized variants that match in structure the traditional formulations, while showing equivalent empirical effectiveness. The probabilistic formulation provides a principled explanation why kNN is an effective recommendation strategy, and identifies a key condition for this to be the case. Moreover, a natural explanation arises for the bias of kNN towards recommending popular items. Thereupon the kNN variants are shown to fall into two groups with similar trends in behavior, corresponding to two different notions of item popularity. We show experiments where the comparative performance of the two groups of algorithms changes substantially, which suggests that the performance measurements and comparison may heavily depend on statistical properties of the input data sample.
【Title】Personalized Key Frame Recommendation
【Abstract】Key frames are playing a very important role for many video applications, such as on-line movie preview and video information retrieval. Although a number of key frame selection methods have been proposed in the past, existing technologies mainly focus on how to precisely summarize the video content, but seldom take the user preferences into consideration. However, in real scenarios, people may cast diverse interests on the contents even for the same video, and thus they may be attracted by quite different key frames, which makes the selection of key frames an inherently personalized process. In this paper, we propose and investigate the problem of personalized key frame recommendation to bridge the above gap. To do so, we make use of video images and user time-synchronized comments to design a novel key frame recommender that can simultaneously model visual and textual features in a unified framework. By user personalization based on her/his previously reviewed frames and posted comments, we are able to encode different user interests in a unified multi-modal space, and can thus select key frames in a personalized manner, which, to the best of our knowledge, is the first time in the research field of video content analysis. Experimental results show that our method performs better than its competitors on various measures.
【Title】Personalized Itinerary Recommendation with Queuing Time Awareness
【Abstract】Personalized itinerary recommendation is a complex and time-consuming problem, due to the need to recommend popular attractions that are aligned to the interest preferences of a tourist, and to plan these attraction visits as an itinerary that has to be completed within a specific time limit. Furthermore, many existing itinerary recommendation systems do not automatically determine and consider queuing times at attractions in the recommended itinerary, which varies based on the time of visit to the attraction, e.g., longer queuing times at peak hours. To solve these challenges, we propose the PersQ algorithm for recommending personalized itineraries that take into consideration attraction popularity, user interests and queuing times. We also implement a framework that utilizes geo-tagged photos to derive attraction popularity, user interests and queuing times, which PersQ uses to recommend personalized and queue-aware itineraries. We demonstrate the effectiveness of PersQ in the context of five major theme parks, based on a Flickr dataset spanning nine years. Experimental results show that PersQ outperforms various state-of-the-art baselines, in terms of various queuing-time related metrics, itinerary popularity, user interest alignment, recall, precision and F1-score.
【Abstract】Multimedia content is dominating today's Web information. The nature of multimedia user-item interactions is 1/0 binary implicit feedback (e.g., photo likes, video views, song downloads, etc.), which can be collected at a larger scale with a much lower cost than explicit feedback (e.g., product ratings). However, the majority of existing collaborative filtering (CF) systems are not well-designed for multimedia recommendation, since they ignore the implicitness in users' interactions with multimedia content. We argue that, in multimedia recommendation, there exists item- and component-level implicitness which blurs the underlying users' preferences. The item-level implicitness means that users' preferences on items (e.g. photos, videos, songs, etc.) are unknown, while the component-level implicitness means that inside each item users' preferences on different components (e.g. regions in an image, frames of a video, etc.) are unknown. For example, a 'view'' on a video does not provide any specific information about how the user likes the video (i.e.item-level) and which parts of the video the user is interested in (i.e.component-level). In this paper, we introduce a novel attention mechanism in CF to address the challenging item- and component-level implicit feedback in multimedia recommendation, dubbed Attentive Collaborative Filtering (ACF). Specifically, our attention model is a neural network that consists of two attention modules: the component-level attention module, starting from any content feature extraction network (e.g. CNN for images/videos), which learns to select informative components of multimedia items, and the item-level attention module, which learns to score the item preferences. ACF can be seamlessly incorporated into classic CF models with implicit feedback, such as BPR and SVD++, and efficiently trained using SGD. Through extensive experiments on two real-world multimedia Web services: Vine and Pinterest, we show that ACF significantly outperforms state-of-the-art CF methods.
【Title】Neural Rating Regression with Abstractive Tips Generation for Recommendation
【Abstract】Recently, some E-commerce sites launch a new interaction box called Tips on their mobile apps. Users can express their experience and feelings or provide suggestions using short texts typically several words or one sentence. In essence, writing some tips and giving a numerical rating are two facets of a user's product assessment action, expressing the user experience and feelings. Jointly modeling these two facets is helpful for designing a better recommendation system. While some existing models integrate text information such as item specifications or user reviews into user and item latent factors for improving the rating prediction, no existing works consider tips for improving recommendation quality. We propose a deep learning based framework named NRT which can simultaneously predict precise ratings and generate abstractive tips with good linguistic quality simulating user experience and feelings. For abstractive tips generation, gated recurrent neural networks are employed to "translate'' user and item latent representations into a concise sentence. Extensive experiments on benchmark datasets from different domains show that NRT achieves significant improvements over the state-of-the-art methods. Moreover, the generated tips can vividly predict the user experience and feelings.
【Title】Neural Factorization Machines for Sparse Predictive Analytics
【Abstract】Many predictive tasks of web applications need to model categorical variables, such as user IDs and demographics like genders and occupations. To apply standard machine learning techniques, these categorical predictors are always converted to a set of binary features via one-hot encoding, making the resultant feature vector highly sparse. To learn from such sparse data effectively, it is crucial to account for the interactions between features.
Factorization Machines (FMs) are a popular solution for efficiently using the second-order feature interactions. However, FM models feature interactions in a linear way, which can be insufficient for capturing the non-linear and complex inherent structure of real-world data. While deep neural networks have recently been applied to learn non-linear feature interactions in industry, such as the Wide&Deep by Google and DeepCross by Microsoft, the deep structure meanwhile makes them difficult to train.
In this paper, we propose a novel model Neural Factorization Machine (NFM) for prediction under sparse settings. NFM seamlessly combines the linearity of FM in modelling second-order feature interactions and the non-linearity of neural network in modelling higher-order feature interactions. Conceptually, NFM is more expressive than FM since FM can be seen as a special case of NFM without hidden layers. Empirical results on two regression tasks show that with one hidden layer only, NFM significantly outperforms FM with a 7.3% relative improvement. Compared to the recent deep learning methods Wide&Deep and DeepCross, our NFM uses a shallower structure but offers better performance, being much easier to train and tune in practice.
【Title】Content Recommendation for Viral Social Influence
【Abstract】How do we create content that will become viral in a whole network after we share it with friends or followers' Significant research activity has been dedicated to the problem of strategically selecting a seed set of initial adopters so as to maximize a meme's spread in a network. This line of work assumes that the success of such a campaign depends solely on the choice of a tunable seed set of adopters, while the way users perceive the propagated meme is fixed. Yet, in many real-world settings, the opposite holds: a meme's propagation depends on users' perceptions of its tunable characteristics, while the set of initiators is fixed.
In this paper, we address the natural problem that arises in such circumstances: Suggest content, expressed as a limited set of attributes, for a creative promotion campaign that starts out from a given seed set of initiators, so as to maximize its expected spread over a social network. To our knowledge, no previous work addresses this problem. We find that the problem is NP-hard and inapproximable. As a tight approximation guarantee is not admissible, we design an efficient heuristic, Explore-Update, as well as a conventional Greedy solution. Our experimental evaluation demonstrates that Explore-Update selects near-optimal attribute sets with real data, achieves 30% higher spread than baselines, and runs an order of magnitude faster than the Greedy solution.
【Title】Exploiting Food Choice Biases for Healthier Recipe Recommendation
【Abstract】By incorporating healthiness into the food recommendation / ranking process we have the potential to improve the eating habits of a growing number of people who use the Internet as a source of food inspiration. In this paper, using insights gained from various data sources, we explore the feasibility of substituting meals that would typically be recommended to users with similar, healthier dishes. First, by analysing a recipe collection sourced from Allrecipes.com, we quantify the potential for finding replacement recipes, which are comparable but have different nutritional characteristics and are nevertheless highly rated by users. Building on this, we present two controlled user studies (n=107, n=111) investigating how people perceive and select recipes. We show participants are unable to reliably identify which recipe contains most fat due to their answers being biased by lack of information, misleading cues and limited nutritional knowledge on their part. By applying machine learning techniques to predict the preferred recipes, good performance can be achieved using low-level image features and recipe meta-data as predictors. Despite not being able to consciously determine which of two recipes contains most fat, on average, participants select the recipe with the most fat as their preference. The importance of image features reveals that recipe choices are often visually driven. A final user study (n=138) investigates to what extent the predictive models can be used to select recipe replacements such that users can be ``nudged'' towards choosing healthier recipes. Our findings have important implications for online food systems.
【Title】
Embedding Factorization Models for Jointly Recommending Items and User Generated Lists
【Abstract】Existing recommender algorithms mainly focused on recommending individual items by utilizing user-item interactions. However, little attention has been paid to recommend user generated lists (e.g., playlists and booklists). On one hand, user generated lists contain rich signal about item co-occurrence, as items within a list are usually gathered based on a specific theme. On the other hand, a user's preference over a list also indicate her preference over items within the list. We believe that 1) if the rich relevance signal within user generated lists can be properly leveraged, an enhanced recommendation for individual items can be provided, and 2) if user-item and user-list interactions are properly utilized, and the relationship between a list and its contained items is discovered, the performance of user-item and user-list recommendations can be mutually reinforced.
Towards this end, we devise embedding factorization models, which extend traditional factorization method by incorporating item-item (item-item-list) co-occurrence with embedding-based algorithms. Specifically, we employ factorization model to capture users' preferences over items and lists, and utilize embedding-based models to discover the co-occurrence information among items and lists. The gap between the two types of models is bridged by sharing items' latent factors. Remarkably, our proposed framework is capable of solving the new-item cold-start problem, where items have never been consumed by users but exist in user generated lists. Overall performance comparisons and micro-level analyses demonstrate the promising performance of our proposed approaches.
【Title】Real Time Recommendations from Connoisseurs
【Abstract】The information overload problem remains serious for both consumers and service/content providers, leading to heightened demands for personalized recommendations. For recommender systems, updating user models is one of the most important tasks to keep up with their changing preferences and trends. Especially since new consumers and items emerge every day, which are promptly rated or reviewed, updating lists of items and rankings is crucial. In this paper, we set the goal of real time recommendation, to present these items instantly. Unlike standard collaborative filtering algorithms, our offline approach focuses only innovative consumers for these predictions, and then uses as few consumers as possible while keeping the same precision. Since innovators exist in many communities, and their opinions will spread and then stimulate their followers to adopt the same behavior, our approach is based on the hypothesis that a set of innova- tive consumers is sufficient to represent the most representative opinions in each community. Following this hypothesis, we derive a scalable method to detect both communities and innovative consumers in each community from a web- scale data from a behavior log. Our evaluation shows that our proposed weighting method can accurately sample given logs, and be compatible only with previous algorithms for real time recommendations.
【Title】Inferring Networks of Substitutable and Complementary Products
【Abstract】To design a useful recommender system, it is important to understand how products relate to each other. For example, while a user is browsing mobile phones, it might make sense to recommend other phones, but once they buy a phone, we might instead want to recommend batteries, cases, or chargers. In economics, these two types of recommendations are referred to as substitutes and complements: substitutes are products that can be purchased instead of each other, while complements are products that can be purchased in addition to each other. Such relationships are essential as they help us to identify items that are relevant to a user's search.
Our goal in this paper is to learn the semantics of substitutes and complements from the text of online reviews. We treat this as a supervised learning problem, trained using networks of products derived from browsing and co-purchasing logs. Methodologically, we build topic models that are trained to automatically discover topics from product reviews that are successful at predicting and explaining such relationships. Experimentally, we evaluate our system on the Amazon product catalog, a large dataset consisting of 9 million products, 237 million links, and 144 million reviews.
【Title】SCRAM: A Sharing Considered Route Assignment Mechanism for Fair Taxi Route Recommendations
【Abstract】Recommending routes for a group of competing taxi drivers is almost untouched in most route recommender systems. For this kind of problem, recommendation fairness and driving efficiency are two fundamental aspects. In the paper, we propose SCRAM, a sharing considered route assignment mechanism for fair taxi route recommendations. SCRAM aims to provide recommendation fairness for a group of competing taxi drivers, without sacrificing driving efficiency. By designing a concise route assignment mechanism, SCRAM achieves better recommendation fairness for competing taxis. By considering the sharing of road sections to avoid unnecessary competition, SCRAM is more efficient in terms of driving cost per customer (DCC). We test SCRAM based on a large number of historical taxi trajectories and validate the recommendation fairness and driving efficiency of SCRAM with extensive evaluations. Experimental results show that SCRAM achieves better recommendation fairness and higher driving efficiency than three compared approaches.
【Title】Matrix Completion with Queries
【Abstract】In many applications, e.g., recommender systems and traffic monitoring, the data comes in the form of a matrix that is only partially observed and low rank. A fundamental data-analysis task for these datasets is matrix completion, where the goal is to accurately infer the entries missing from the matrix. Even when the data satisfies the low-rank assumption, classical matrix-completion methods may output completions with significant error -- in that the reconstructed matrix differs significantly from the true underlying matrix. Often, this is due to the fact that the information contained in the observed entries is insufficient. In this work, we address this problem by proposing an active version of matrix completion, where queries can be made to the true underlying matrix. Subsequently, we design Order&Extend, which is the first algorithm to unify a matrix-completion approach and a querying strategy into a single algorithm. Order&Extend is able identify and alleviate insufficient information by judiciously querying a small number of additional entries. In an extensive experimental evaluation on real-world datasets, we demonstrate that our algorithm is efficient and is able to accurately reconstruct the true matrix while asking only a small number of queries.
【Title】Collaborative Deep Learning for Recommender Systems
【Abstract】Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recently advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art.
【Title】Life-stage Prediction for Product Recommendation in E-commerce
【Abstract】Although marketing researchers and sociologists have recognized the large impact of life stage on consumer's purchasing behaviors, existing recommender systems have not taken this impact into consideration. In this paper, we found obvious correlation between life stage and purchasing behavior in many E-commerce categories. For example, a mum may look for different suitable products when her baby is at different ages. Motivated by this, we introduce the conception of life stage into recommender systems and propose to predict a user's current life-stage and recommend products correspondingly. We propose a new Maximum Entropy Semi Markov Model to segment and label consumer life stage based on the observed purchasing data over time. In the mom-baby product category where the life stage transition is deterministic, we develop an efficient approximate solution using large scale logistic regression and a Viterbi-like algorithm. We also propose a Gaussian mixture model to efficiently handle multi-kids life stage prediction problem. We integrate the life stage information predicted into the recommender system behind the largest online shopping website taobao.com. Both offline and online experiments demonstrate the effectiveness of the proposed life-stage based recommendation approach.
【Title】An Architecture for Agile Machine Learning in Real-Time Applications
【Abstract】Machine learning techniques have proved effective in recommender systems and other applications, yet teams working to deploy them lack many of the advantages that those in more established software disciplines today take for granted. The well-known Agile methodology advances projects in a chain of rapid development cycles, with subsequent steps often informed by production experiments. Support for such workflow in machine learning applications remains primitive.
The platform developed at if(we) embodies a specific machine learning approach and a rigorous data architecture constraint, so allowing teams to work in rapid iterative cycles. We require models to consume data from a time-ordered event history, and we focus on facilitating creative feature engineering. We make it practical for data scientists to use the same model code in development and in production deployment, and make it practical for them to collaborate on complex models.
We deliver real-time recommendations at scale, returning top results from among 10,000,000 candidates with sub-second response times and incorporating new updates in just a few seconds. Using the approach and architecture described here, our team can routinely go from ideas for new models to production-validated results within two weeks.
【Title】Stock Constrained Recommendation in Tmall
【Abstract】A large number of recommender systems have been developed to serve users with interesting news, ads, products or other contents. One main limitation with the existing work is that they do not take into account the inventory size of of items to be recommended. As a result, popular items are likely to be out of stock soon as they have been recommended and sold to many users, significantly affecting the impact of recommendation and user experience. This observation motivates us to develop a novel aware recommender system. It jointly optimizes the recommended items for all users based on both user preference and inventory sizes of different items. It requires solving a non-smooth optimization involved estimating a matrix of nxn, where n is the number of items. With the proliferation of items, this approach can quickly become computationally infeasible. We address this challenge by developing a dual method that reduces the number of variables from n^2 to n, significantly improving the computational efficiency. We also extend this approach to the online setting, which is particularly important for big promotion events. Our empirical studies based on a real benchmark data with 100 millions of user visits from Tmall verify the effectiveness of the proposed approach.
【Title】Web Personalization and Recommender Systems
【Abstract】The quantity of accessible information has been growing rapidly and far exceeded human processing capabilities. The sheer abundance of information often prevents users from discovering the desired information, or aggravates making informed and correct choices. This highlights the pressing need for intelligent personalized applications that simplify information access and discovery by taking into account users' preferences and needs. One type of personalized application that has recently become tremendously popular in research and industry is recommender systems. These provide to users personalized recommendations about information and products they may be interested to examine or purchase. Extensive research into recommender systems has yielded a variety of techniques, which have been published at a variety of conferences and adopted by numerous Web-sites. This tutorial will provide the participants with broad overview and thorough understanding of algorithms and practically deployed Web and mobile applications of personalized technologies.
【Title】An Empirical Study on Recommendation with Multiple Types of Feedback
【Abstract】User feedback like clicks and ratings on recommended items provides important information for recommender systems to predict users' interests in unseen items. Most systems rely on models trained using a single type of feedback, e.g., ratings for movie recommendation and clicks for online news recommendation. However, in addition to the primary feedback, many systems also allow users to provide other types of feedback, e.g., liking or sharing an article, or hiding all articles from a source. These additional feedback potentially provides extra information for the recommendation models. To optimize user experience and business objectives, it is important for a recommender system to use both the primary feedback and additional feedback. This paper presents an empirical study on various training methods for incorporating multiple user feedback types based on LinkedIn recommendation products. We study three important problems that we face at LinkedIn: (1) Whether to send an email based on clicks and complaints, (2) how to rank updates in LinkedIn feeds based on clicks and hides and (3) how jointly optimize for viral actions and clicks in LinkedIn feeds. Extensive offline experiments on historical data show the effectiveness of these methods in different situations. Online A/B testing results further demonstrate the impact of these methods on LinkedIn production systems.
【Title】Collaborative Knowledge Base Embedding for Recommender Systems
【Abstract】Among different recommendation techniques, collaborative filtering usually suffer from limited performance due to the sparsity of user-item interactions. To address the issues, auxiliary information is usually used to boost the performance. Due to the rapid collection of information on the web, the knowledge base provides heterogeneous information including both structured and unstructured data with different semantics, which can be consumed by various applications. In this paper, we investigate how to leverage the heterogeneous information in a knowledge base to improve the quality of recommender systems. First, by exploiting the knowledge base, we design three components to extract items' semantic representations from structural content, textual content and visual content, respectively. To be specific, we adopt a heterogeneous network embedding method, termed as TransR, to extract items' structural representations by considering the heterogeneity of both nodes and relationships. We apply stacked denoising auto-encoders and stacked convolutional auto-encoders, which are two types of deep learning based embedding techniques, to extract items' textual representations and visual representations, respectively. Finally, we propose our final integrated framework, which is termed as Collaborative Knowledge Base Embedding (CKE), to jointly learn the latent representations in collaborative filtering as well as items' semantic representations from the knowledge base. To evaluate the performance of each embedding component as well as the whole system, we conduct extensive experiments with two real-world datasets from different scenarios. The results reveal that our approaches outperform several widely adopted state-of-the-art recommendation methods.
【Title】Compute Job Memory Recommender System Using Machine Learning
【Abstract】This paper presents a machine learning approach to predict the amount of compute memory needed by jobs which are submitted to Load Sharing Facility (LSF® ) with a high level of accuracy. LSF® is the compute resource manager and job scheduler for Qualcomm chip design process. It schedules the jobs based on available resources: CPU, memory, storage, and software licenses. Memory is one of the key resources and its proper utilization leads to a substantial improvement in saving machine resources which in turn results in a significant reduction in overall job pending time. In addition, efficient memory utilization helps to reduce the operations cost by decreasing the number of servers needed for the end-to-end design process. In this paper, we explored a suite of statistical and machine learning techniques to develop a Compute Memory Recommender System for the Qualcomm chip design process with over 90% accuracy in predicting the amount of memory a job needs. Moreover, it demonstrates the potential to significantly reduce job pending time.
【Title】Scalable Time-Decaying Adaptive Prediction Algorithm
【Abstract】Online learning is used in a wide range of real applications, e.g., predicting ad click-through rates (CTR) and personalized recommendations. Based on the analysis of users' behaviors in Video-On-Demand (VoD) recommender systems,we discover that the most recent users' actions can better reflect users' current intentions and preferences. Under this observation, we thereby propose a novel time-decaying online learning algorithm derived from the state-of-the-art FTRL-proximal algorithm, called Time-Decaying Adaptive Prediction (TDAP) algorithm.
To scale Big Data, we further parallelize our algorithm following the data parallel scheme under both BSP and SSP consistency model. We experimentally evaluate our TDAP algorithm on real IPTV VoD datasets using two state-of-the-art distributed computing platforms, TDAP achieves good accuracy: it improves at least 5.6% in terms of prediction accuracy, compared to FTRL-proximal algorithm; and TDAP scales well: it runs 4 times faster when the number of machines increases from 2 to 10.
【Title】The Limits of Popularity-Based Recommendations, and the Role of Social Ties
【Abstract】In this paper we introduce a mathematical model that captures some of the salient features of recommender systems that are based on popularity and that try to exploit social ties among the users. We show that, under very general conditions, the market always converges to a steady state, for which we are able to give an explicit form. Thanks to this we can tell rather precisely how much a market is altered by a recommendation system, and determine the power of users to influence others. Our theoretical results are complemented by experiments with real world social networks showing that social graphs prevent large market distortions in spite of the presence of highly influential users.
【Title】Towards Conversational Recommender Systems
【Abstract】People often ask others for restaurant recommendations as a way to discover new dining experiences. This makes restaurant recommendation an exciting scenario for recommender systems and has led to substantial research in this area. However, most such systems behave very differently from a human when asked for a recommendation. The goal of this paper is to begin to reduce this gap. In particular, humans can quickly establish preferences when asked to make a recommendation for someone they do not know. We address this cold-start recommendation problem in an online learning setting. We develop a preference elicitation framework to identify which questions to ask a new user to quickly learn their preferences. Taking advantage of latent structure in the recommendation space using a probabilistic latent factor model, our experiments with both synthetic and real world data compare different types of feedback and question selection strategies. We find that our framework can make very effective use of online user feedback, improving personalized recommendations over a static model by 25% after asking only 2 questions. Our results demonstrate dramatic benefits of starting from offline embeddings, and highlight the benefit of bandit-based explore-exploit strategies in this setting.
【Title】Point-of-Interest Recommendations: Learning Potential Check-ins from Friends
【Abstract】The emergence of Location-based Social Network (LBSN) services provides a wonderful opportunity to build personalized Point-of-Interest (POI) recommender systems. Although a personalized POI recommender system can significantly facilitate users' outdoor activities, it faces many challenging problems, such as the hardness to model user's POI decision making process and the difficulty to address data sparsity and user/location cold-start problem. To cope with these challenges, we define three types of friends (i.e., social friends, location friends, and neighboring friends) in LBSN, and develop a two-step framework to leverage the information of friends to improve POI recommendation accuracy and address cold-start problem. Specifically, we first propose to learn a set of potential locations that each individual's friends have checked-in before and this individual is most interested in. Then we incorporate three types of check-ins (i.e., observed check-ins, potential check-ins and other unobserved check-ins) into matrix factorization model using two different loss functions (i.e., the square error based loss and the ranking error based loss). To evaluate the proposed model, we conduct extensive experiments with many state-of-the-art baseline methods and evaluation metrics on two real-world data sets. The experimental results demonstrate the effectiveness of our methods.
【Title】Continuous Experience-aware Language Model
【Abstract】Online review communities are dynamic as users join and leave, adopt new vocabulary, and adapt to evolving trends. Recent work has shown that recommender systems benefit from explicit consideration of user experience. However, prior work assumes a fixed number of discrete experience levels, whereas in reality users gain experience and mature continuously over time. This paper presents a new model that captures the continuous evolution of user experience, and the resulting language model in reviews and other posts. Our model is unsupervised and combines principles of Geometric Brownian Motion, Brownian Motion, and Latent Dirichlet Allocation to trace a smooth temporal progression of user experience and language model respectively. We develop practical algorithms for estimating the model parameters from data and for inference with our model (e.g., to recommend items). Extensive experiments with five real-world datasets show that our model not only fits data better than discrete-model baselines, but also outperforms state-of-the-art methods for predicting item ratings.
【Title】Unsupervised P2P Rental Recommendations via Integer Programming
【Abstract】Due to the sparseness of quality rating data, unsupervised recommender systems are used in many applications in Peer to Peer (P2P) rental marketplaces such as Airbnb, FlipKey, and HomeAway. We present an integer programming based recommender systems, where both accommodation benefits and community risks of lodging places are measured and incorporated into an objective function as utility measurements. More specifically, we first present an unsupervised fused scoring method for quantifying the accommodation benefits and community risks of a lodging with crowd-sourced geo-tagged data. In order to the utility of recommendations, we formulate the unsupervised P2P rental recommendations as a constrained integer programming problem, where the accommodation benefits of recommendations are maximized and the community risks of recommendations are minimized, while maintaining constraints on personalization. Furthermore, we provide an efficient solution for the optimization problem by developing a learning-to-integer-programming method for combining aggregated listwise learning to rank into branching variable selection. We apply the proposed approach to the Airbnb data of New York City and provide lodging recommendations to travelers. In our empirical experiments, we demonstrate both the efficiency and effectiveness of our method in terms of striving a trade-off between the user satisfaction, time on market, and the number of reviews, and achieving a balance between positive and negative sides.
【Title】Collaborative Variational Autoencoder for Recommender Systems
【Abstract】Modern recommender systems usually employ collaborative filtering with rating information to recommend items to users due to its successful performance. However, because of the drawbacks of collaborative-based methods such as sparsity, cold start, etc., more attention has been drawn to hybrid methods that consider both the rating and content information. Most of the previous works in this area cannot learn a good representation from content for recommendation task or consider only text modality of the content, thus their methods are very limited in current multimedia scenario. This paper proposes a Bayesian generative model called collaborative variational autoencoder (CVAE) that considers both rating and content for recommendation in multimedia scenario. The model learns deep latent representations from content data in an unsupervised manner and also learns implicit relationships between items and users from both content and rating. Unlike previous works with denoising criteria, the proposed CVAE learns a latent distribution for content in latent space instead of observation space through an inference network and can be easily extended to other multimedia modalities other than text. Experiments show that CVAE is able to significantly outperform the state-of-the-art recommendation methods with more robust performance.
【Title】HoORaYs: High-order Optimization of Rating Distance for Recommender Systems
【Abstract】Latent factor models have become a prevalent method in recommender systems, to predict users' preference on items based on the historical user feedback. Most of the existing methods, explicitly or implicitly, are built upon the first-order rating distance principle, which aims to minimize the difference between the estimated and real ratings. In this paper, we generalize such first-order rating distance principle and propose a new latent factor model (HoORaYs) for recommender systems. The core idea of the proposed method is to explore high-order rating distance, which aims to minimize not only (i) the difference between the estimated and real ratings of the same (user, item) pair (i.e., the first-order rating distance), but also (ii) the difference between the estimated and real rating difference of the same user across different items (i.e., the second-order rating distance). We formulate it as a regularized optimization problem, and propose an effective and scalable algorithm to solve it. Our analysis from the geometry and Bayesian perspectives indicate that by exploring the high-order rating distance, it helps to reduce the variance of the estimator, which in turns leads to better generalization performance (e.g., smaller prediction error). We evaluate the proposed method on four real-world data sets, two with explicit user feedback and the other two with implicit user feedback. Experimental results show that the proposed method consistently outperforms the state-of-the-art methods in terms of the prediction accuracy.
【Title】Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks
【Abstract】Heterogeneous Information Network (HIN) is a natural and general representation of data in modern large commercial recommender systems which involve heterogeneous types of data. HIN based recommenders face two problems: how to represent the high-level semantics of recommendations and how to fuse the heterogeneous information to make recommendations. In this paper, we solve the two problems by first introducing the concept of meta-graph to HIN-based recommendation, and then solving the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" approach. For the similarities generated by each meta-graph, we perform standard MF to generate latent features for both users and items. With different meta-graph based features, we propose to use FM with Group lasso (FMG) to automatically learn from the observed ratings to effectively select useful meta-graph based features. Experimental results on two real-world datasets, Amazon and Yelp, show the effectiveness of our approach compared to state-of-the-art FM and other HIN-based recommendation algorithms.
【Title】Post Processing Recommender Systems for Diversity
【Abstract】Collaborative filtering is a broad and powerful framework for building recommendation systems that has seen widespread adoption. Over the past decade, the propensity of such systems for favoring popular products and thus creating echo chambers have been observed. This has given rise to an active area of research that seeks to diversify recommendations generated by such algorithms. We address the problem of increasing diversity in recom- mendation systems that are based on collaborative filtering that use past ratings to predict a rating quality for potential recommendations. Following our earlier work, we formulate recommendation system design as a subgraph selection problem from a candidate super-graph of potential recommendations where both diversity and rating quality are explicitly optimized: (1) On the modeling side, we define a new flexible notion of diversity that allows a system designer to prescribe the number of recommendations each item should receive, and smoothly penalizes deviations from this distribution. (2) On the algorithmic side, we show that minimum-cost network flow methods yield fast algorithms in theory and practice for designing recommendation subgraphs that optimize this notion of diversity. (3) On the empirical side, we show the effectiveness of our new model and method to increase diversity while maintaining high rating quality in standard rating data sets from Netflix and MovieLens.
【Title】End-to-end Learning for Short Text Expansion
【Abstract】Effectively making sense of short texts is a critical task for many real world applications such as search engines, social media services, and recommender systems. The task is particularly challenging as a short text contains very sparse information, often too sparse for a machine learning algorithm to pick up useful signals. A common practice for analyzing short text is to first expand it with external information, which is usually harvested from a large collection of longer texts. In literature, short text expansion has been done with all kinds of heuristics. We propose an end-to-end solution that automatically learns how to expand short text to optimize a given learning task. A novel deep memory network is proposed to automatically find relevant information from a collection of longer documents and reformulate the short text through a gating mechanism. Using short text classification as a demonstrating task, we show that the deep memory network significantly outperforms classical text expansion methods with comprehensive experiments on real world data sets.
【Abstract】Recommender system is one of the most popular data mining topics that keep drawing extensive attention from both academia and industry. Among them, POI (point of interest) recommendation is extremely practical but challenging: it greatly benefits both users and businesses in real-world life, but it is hard due to data scarcity and various context. While a number of algorithms attempt to tackle the problem w.r.t. specific data and problem settings, they often fail when the scenarios change. In this work, we propose to devise a general and principled SSL (semi-supervised learning) framework, to alleviate data scarcity via smoothing among neighboring users and POIs, and treat various context by regularizing user preference based on context graphs. To enable such a framework, we develop PACE (Preference And Context Embedding), a deep neural architecture that jointly learns the embeddings of users and POIs to predict both user preference over POIs and various context associated with users and POIs. We show that PACE successfully bridges CF (collaborative filtering) and SSL by generalizing the de facto methods matrix factorization of CF and graph Laplacian regularization of SSL. Extensive experiments on two real location-based social network datasets demonstrate the effectiveness of PACE.
【Title】A Data-driven Process Recommender Framework
【Abstract】We present an approach for improving the performance of complex knowledge-based processes by providing data-driven step-by-step recommendations. Our framework uses the associations between similar historic process performances and contextual information to determine the prototypical way of enacting the process. We introduce a novel similarity metric for grouping traces into clusters that incorporates temporal information about activity performance and handles concurrent activities. Our data-driven recommender system selects the appropriate prototype performance of the process based on user-provided context attributes. Our approach for determining the prototypes discovers the commonly performed activities and their temporal relationships. We tested our system on data from three real-world medical processes and achieved recommendation accuracy up to an F1 score of 0.77 (compared to an F1 score of 0.37 using ZeroR) with 63.2% of recommended enactments being within the first five neighbors of the actual historic enactments in a set of 87 cases. Our framework works as an interactive visual analytic tool for process mining. This work shows the feasibility of data-driven decision support system for complex knowledge-based processes.
【Title】Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
【Abstract】We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. These constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method – called Policy Optimizer for Exponential Models (POEM) – for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. POEM is evaluated on several multi-label classification problems showing substantially improved robustness and generalization performance compared to the state-of-the-art.
【Title】Safe Exploration for Optimization with Gaussian Processes
【Abstract】We consider sequential decision problems under uncertainty, where we seek to optimize an unknown function from noisy samples. This requires balancing exploration (learning about the objective) and exploitation (localizing the maximum), a problem well-studied in the multi-armed bandit literature. In many applications, however, we require that the sampled function values exceed some prespecified "safety" threshold, a requirement that existing algorithms fail to meet. Examples include medical applications where patient comfort must be guaranteed, recommender systems aiming to avoid user dissatisfaction, and robotic control, where one seeks to avoid controls causing physical harm to the platform. We tackle this novel, yet rich, set of problems under the assumption that the unknown function satisfies regularity conditions expressed via a Gaussian process prior. We develop an efficient algorithm called SafeOpt, and theoretically guarantee its convergence to a natural notion of optimum reachable under safety constraints. We evaluate SafeOpt on synthetic data, as well as two real applications: movie recommendation, and therapeutic spinal cord stimulation.
【Title】Non-Linear Cross-Domain Collaborative Filtering via Hyper-Structure Transfer
【Abstract】The Cross Domain Collaborative Filtering (CDCF) exploits the rating matrices from multiple domains to make better recommendations. Existing CDCF methods adopt the sub-structure sharing technique that can only transfer linearly correlated knowledge between domains. In this paper, we propose the notion of Hyper-Structure Transfer (HST) that requires the rating matrices to be explained by the projections of some more complex structure, called the hyper-structure, shared by all domains, and thus allows the non-linearly correlated knowledge between domains to be identified and transferred. Extensive experiments are conducted and the results demonstrate the effectiveness of our HST models empirically.
【Title】MRA-based Statistical Learning from Incomplete Rankings
【Abstract】Statistical analysis of rank data describing preferences over small and variable subsets of a potentially large ensemble of items 1, ..., n is a very challenging problem. It is motivated by a wide variety of modern applications, such as recommender systems or search engines. However, very few inference methods have been documented in the literature to learn a ranking model from such incomplete rank data. The goal of this paper is twofold: it develops a rigorous mathematical framework for the problem of learning a ranking model from incomplete rankings and introduces a novel general statistical method to address it. Based on an original concept of multi-resolution analysis (MRA) of incomplete rankings, it finely adapts to any observation setting, leading to a statistical accuracy and an algorithmic complexity that depend directly on the complexity of the observed data. Beyond theoretical guarantees, we also provide experimental results that show its statistical performance.
【Title】PU Learning for Matrix Completion
【Abstract】In this paper, we consider the matrix completion problem when the observations are one-bit measurements of some underlying matrix M , and in particular the observed samples consist only of ones and no zeros. This problem is motivated by modern applications such as recommender systems and social networks where only “likes” or “friendships” are observed. The problem is an instance of PU (positive-unlabeled) learning, i.e. learning from only positive and unlabeled examples that has been studied in the context of binary classification. Under the assumption that M has bounded nuclear norm, we provide recovery guarantees for two different observation models: 1) M parameterizes a distribution that generates a binary matrix, 2) M is thresholded to obtain a binary matrix. For the first case, we propose a “shifted matrix completion” method that recovers M using only a subset of indices corresponding to ones; for the second case, we propose a “biased matrix completion” method that recovers the (thresholded) binary matrix. Both methods yield strong error bounds — if M ∈R^n \times n, the error is bounded as O(1-ρ) , where 1-ρdenotes the fraction of ones observed. This implies a sample complexity of O(n log n) ones to achieve a small error, when M is dense and n is large. We extend our analysis to the inductive matrix completion problem, where rows and columns of M have associated features. We develop efficient and scalable optimization procedures for both the proposed methods and demonstrate their effectiveness for link prediction (on real-world networks consisting of over 2 million nodes and 90 million links) and semi-supervised clustering tasks.
【Title】Minimum Regret Search for Single- and Multi-Task Optimization
【Abstract】We propose minimum regret search (MRS), a novel acquisition function for Bayesian optimization. MRS bears similarities with information-theoretic approaches such as entropy search (ES). However, while ES aims in each query at maximizing the information gain with respect to the global maximum, MRS aims at minimizing the expected simple regret of its ultimate recommendation for the optimum. While empirically ES and MRS perform similar in most of the cases, MRS produces fewer outliers with high simple regret than ES. We provide empirical results both for a synthetic single-task optimization problem as well as for a simulated multi-task robotic control problem.
【Title】Low-Rank Matrix Approximation with Stability
【Abstract】Low-rank matrix approximation has been widely adopted in machine learning applications with sparse data, such as recommender systems. However, the sparsity of the data, incomplete and noisy, introduces challenges to the algorithm stability – small changes in the training data may significantly change the models. As a result, existing low-rank matrix approximation solutions yield low generalization performance, exhibiting high error variance on the training dataset, and minimizing the training error may not guarantee error reduction on the testing dataset. In this paper, we investigate the algorithm stability problem of low-rank matrix approximations. We present a new algorithm design framework, which (1) introduces new optimization objectives to guide stable matrix approximation algorithm design, and (2) solves the optimization problem to obtain stable low-rank approximation solutions with good generalization performance. Experimental results on real-world datasets demonstrate that the proposed work can achieve better prediction accuracy compared with both state-of-the-art low-rank matrix approximation methods and ensemble methods in recommendation task.
【Title】Online Stochastic Linear Optimization under One-bit Feedback
【Abstract】In this paper, we study a special bandit setting of online stochastic linear optimization, where only one-bit of information is revealed to the learner at each round. This problem has found many applications including online advertisement and online recommendation. We assume the binary feedback is a random variable generated from the logit model, and aim to minimize the regret defined by the unknown linear function. Although the existing method for generalized linear bandit can be applied to our problem, the high computational cost makes it impractical for real-world applications. To address this challenge, we develop an efficient online learning algorithm by exploiting particular structures of the observation model. Specifically, we adopt online Newton step to estimate the unknown parameter and derive a tight confidence region based on the exponential concavity of the logistic loss. Our analysis shows that the proposed algorithm achieves a regret bound of O(d\sqrtT), which matches the optimal result of stochastic linear bandits.
【Title】Actively Learning Hemimetrics with Applications to Eliciting User Preferences
【Abstract】Motivated by an application of eliciting users’ preferences, we investigate the problem of learning hemimetrics, i.e., pairwise distances among a set of n items that satisfy triangle inequalities and non-negativity constraints. In our application, the (asymmetric) distances quantify private costs a user incurs when substituting one item by another. We aim to learn these distances (costs) by asking the users whether they are willing to switch from one item to another for a given incentive offer. Without exploiting structural constraints of the hemimetric polytope, learning the distances between each pair of items requires Θ(n^2) queries. We propose an active learning algorithm that substantially reduces this sample complexity by exploiting the structural constraints on the version space of hemimetrics. Our proposed algorithm achieves provably-optimal sample complexity for various instances of the task. For example, when the items are embedded into K tight clusters, the sample complexity of our algorithm reduces to O(n K). Extensive experiments on a restaurant recommendation data set support the conclusions of our theoretical analysis.
【Title】Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms
【Abstract】Polynomial networks and factorization machines are two recently-proposed models that can efficiently use feature interactions in classification and regression tasks. In this paper, we revisit both models from a unified perspective. Based on this new view, we study the properties of both models and propose new efficient training algorithms. Key to our approach is to cast parameter learning as a low-rank symmetric tensor estimation problem, which we solve by multi-convex optimization. We demonstrate our approach on regression and recommender system tasks.
【Title】DCM Bandits: Learning to Rank with Multiple Clicks
【Abstract】A search engine recommends to the user a list of web pages. The user examines this list, from the first page to the last, and clicks on all attractive pages until the user is satisfied. This behavior of the user can be described by the dependent click model (DCM). We propose DCM bandits, an online learning variant of the DCM where the goal is to maximize the probability of recommending satisfactory items, such as web pages. The main challenge of our learning problem is that we do not observe which attractive item is satisfactory. We propose a computationally-efficient learning algorithm for solving our problem, dcmKL-UCB; derive gap-dependent upper bounds on its regret under reasonable assumptions; and also prove a matching lower bound up to logarithmic factors. We evaluate our algorithm on synthetic and real-world problems, and show that it performs well even when our model is misspecified. This work presents the first practical and regret-optimal online algorithm for learning to rank with multiple clicks in a cascade-like click model.
【Abstract】We study the K-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. The hardness of recommending Copeland winners, the arms that beat the greatest number of other arms, is characterized by deriving an asymptotic regret bound. We propose Copeland Winners Deterministic Minimum Empirical Divergence (CW-RMED), an algorithm inspired by the DMED algorithm (Honda and Takemura, 2010), and derive an asymptotically optimal regret bound for it. However, it is not known whether the algorithm can be efficiently computed or not. To address this issue, we devise an efficient version (ECW-RMED) and derive its asymptotic regret bound. Experimental comparisons of dueling bandit algorithms show that ECW-RMED significantly outperforms existing ones.
【Title】Contextual Combinatorial Cascading Bandits
【Abstract】We propose the contextual combinatorial cascading bandits, a combinatorial online learning game, where at each time step a learning agent is given a set of contextual information, then selects a list of items, and observes stochastic outcomes of a prefix in the selected items by some stopping criterion. In online recommendation, the stopping criterion might be the first item a user selects; in network routing, the stopping criterion might be the first edge blocked in a path. We consider position discounts in the list order, so that the agent’s reward is discounted depending on the position where the stopping criterion is met. We design a UCB-type algorithm, C^3-UCB, for this problem, prove an n-step regret bound \tildeO(\sqrtn) in the general setting, and give finer analysis for two special cases. Our work generalizes existing studies in several directions, including contextual information, position discounts, and a more general cascading bandit model. Experiments on synthetic and real datasets demonstrate the advantage of involving contextual information and position discounts.
【Title】Fast Constrained Submodular Maximization: Personalized Data Summarization
【Abstract】Can we summarize multi-category data based on user preferences in a scalable manner? Many utility functions used for data summarization satisfy submodularity, a natural diminishing returns property. We cast personalized data summarization as an instance of a general submodular maximization problem subject to multiple constraints. We develop the first practical and FAst coNsTrained submOdular Maximization algorithm, FANTOM, with strong theoretical guarantees. FANTOM maximizes a submodular function (not necessarily monotone) subject to intersection of a p-system and l knapsacks constrains. It achieves a (1 + ε)(p + 1)(2p + 2l + 1)/p approximation guarantee with only O(nrp log(n)/ε) query complexity (n and r indicate the size of the ground set and the size of the largest feasible solution, respectively). We then show how we can use FANTOM for personalized data summarization. In particular, a p-system can model different aspects of data, such as categories or time stamps, from which the users choose. In addition, knapsacks encode users’ constraints including budget or time. In our set of experiments, we consider several concrete applications: movie recommendation over 11K movies, personalized image summarization with 10K images, and revenue maximization on the YouTube social networks with 5000 communities. We observe that FANTOM constantly provides the highest utility against all the baselines.
【Title】Predictive Entropy Search for Multi-objective Bayesian Optimization
【Abstract】We present \small PESMO, a Bayesian method for identifying the Pareto set of multi-objective optimization problems, when the functions are expensive to evaluate. \small PESMO chooses the evaluation points to maximally reduce the entropy of the posterior distribution over the Pareto set. The \small PESMO acquisition function is decomposed as a sum of objective-specific acquisition functions, which makes it possible to use the algorithm in \emphdecoupled scenarios in which the objectives can be evaluated separately and perhaps with different costs. This decoupling capability is useful to identify difficult objectives that require more evaluations. \small PESMO also offers gains in efficiency, as its cost scales linearly with the number of objectives, in comparison to the exponential cost of other methods. We compare \small PESMO with other methods on synthetic and real-world problems. The results show that \small PESMO produces better recommendations with a smaller number of evaluations, and that a decoupled evaluation can lead to improvements in performance, particularly when the number of objectives is large.
【Title】Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum Design
【Abstract】Successfully recommending personalized course schedules is a difficult problem given the diversity of students knowledge, learning behaviour, and goals. This paper presents personalized course recommendation and curriculum design algorithms that exploit logged student data. The algorithms are based on the regression estimator for contextual multi-armed bandits with a penalized variance term. Guarantees on the predictive performance of the algorithms are provided using empirical Bernstein bounds. We also provide guidelines for including expert domain knowledge into the recommendations. Using undergraduate engineering logged data from a post-secondary institution we illustrate the performance of these algorithms.
【Title】Gaussian process nonparametric tensor estimator and its minimax optimality
【Abstract】We investigate the statistical efficiency of a nonparametric Gaussian process method for a nonlinear tensor estimation problem. Low-rank tensor estimation has been used as a method to learn higher order relations among several data sources in a wide range of applications, such as multi-task learning, recommendation systems, and spatiotemporal analysis. We consider a general setting where a common linear tensor learning is extended to a nonlinear learning problem in reproducing kernel Hilbert space and propose a nonparametric Bayesian method based on the Gaussian process method. We prove its statistical convergence rate without assuming any strong convexity, such as restricted strong convexity. Remarkably, it is shown that our convergence rate achieves the minimax optimal rate. We apply our proposed method to multi-task learning and show that our method significantly outperforms existing methods through numerical experiments on real-world data sets.
【Title】Recommendations as Treatments: Debiasing Learning and Evaluation
【Abstract】Most data for evaluating and training recommender systems is subject to selection biases, either through self-selection by the users or through the actions of the recommendation system itself. In this paper, we provide a principled approach to handle selection biases by adapting models and estimation techniques from causal inference. The approach leads to unbiased performance estimators despite biased data, and to a matrix factorization method that provides substantially improved prediction performance on real-world data. We theoretically and empirically characterize the robustness of the approach, and find that it is highly practical and scalable.
【Title】Dictionary Learning for Massive Matrix Factorization
【Abstract】Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also effective to perform data completion or denoising. Its applicability to large datasets has been addressed with online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both of them. In this paper, we tackle very large matrices in both dimensions. We propose a new factorization method that scales gracefully to terabyte-scale datasets. Those could not be processed by previous algorithms in a reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we obtain significant speed-ups compared to state-of-the art coordinate descent methods.
【Title】Hierarchical Compound Poisson Factorization
【Abstract】Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from a tight coupling of sparsity model (absence of a rating) and response model (the value of the rating), which limits the expressiveness of the latter. Here, we introduce hierarchical compound Poisson factorization (HCPF) that has the favorable Gamma-Poisson structure and scalability of HPF to high-dimensional extremely sparse matrices. More importantly, HCPF decouples the sparsity model from the response model, allowing us to choose the most suitable distribution for the response. HCPF can capture binary, non-negative discrete, non-negative continuous, and zero-inflated continuous responses. We compare HCPF with HPF on nine discrete and three continuous data sets and conclude that HCPF captures the relationship between sparsity and response better than HPF.
【Title】Dueling Bandits with Weak Regret
【Abstract】We consider online content recommendation with implicit feedback through pairwise comparisons, formalized as the so-called dueling bandit problem. We study the dueling bandit problem in the Condorcet winner setting, and consider two notions of regret: the more well-studied strong regret, which is 0 only when both arms pulled are the Condorcet winner; and the less well-studied weak regret, which is 0 if either arm pulled is the Condorcet winner. We propose a new algorithm for this problem, Winner Stays (WS), with variations for each kind of regret: WS for weak regret (WS-W) has expected cumulative weak regret that is , and if arms have a total order; WS for strong regret (WS-S) has expected cumulative strong regret of , and if arms have a total order. WS-W is the first dueling bandit algorithm with weak regret that is constant in time. WS is simple to compute, even for problems with many arms, and we demonstrate through numerical experiments on simulated and real data that WS has significantly smaller regret than existing algorithms in both the weak- and strong-regret settings.
【Title】Zonotope Hit-and-run for Efficient Sampling from Projection DPPs
【Abstract】Determinantal point processes (DPPs) are distributions over sets of items that model diversity using kernels. Their applications in machine learning include summary extraction and recommendation systems. Yet, the cost of sampling from a DPP is prohibitive in large-scale applications, which has triggered an effort towards efficient approximate samplers. We build a novel MCMC sampler that combines ideas from combinatorial geometry, linear programming, and Monte Carlo methods to sample from DPPs with a fixed sample cardinality, also called projection DPPs. Our sampler leverages the ability of the hit-and-run MCMC kernel to efficiently move across convex bodies. Previous theoretical results yield a fast mixing time of our chain when targeting a distribution that is close to a projection DPP, but not a DPP in general. Our empirical results demonstrate that this extends to sampling projection DPPs, i.e., our sampler is more sample-efficient than previous approaches which in turn translates to faster convergence when dealing with costly-to-evaluate functions, such as summary extraction in our experiments.
【Title】On Context-Dependent Clustering of Bandits
【Abstract】We investigate a novel cluster-of-bandit algorithm CAB for collaborative recommendation tasks that implements the underlying feedback sharing mechanism by estimating user neighborhoods in a context-dependent manner. CAB makes sharp departures from the state of the art by incorporating collaborative effects into inference, as well as learning processes in a manner that seamlessly interleaves explore-exploit tradeoffs and collaborative steps. We prove regret bounds for CAB under various data-dependent assumptions which exhibit a crisp dependence on the expected number of clusters over the users, a natural measure of the statistical difficulty of the learning task. Experiments on production and real-world datasets show that CAB offers significantly increased prediction performance against a representative pool of state-of-the-art methods.
【Title】Preferential Bayesian Optimization
【Abstract】Bayesian optimization (BO) has emerged during the last few years as an effective approach to optimize black-box functions where direct queries of the objective are expensive. We consider the case where direct access to the function is not possible, but information about user preferences is. Such scenarios arise in problems where human preferences are modeled, such as A/B tests or recommender systems. We present a new framework for this scenario that we call Preferential Bayesian Optimization (PBO) and that allows to find the optimum of a latent function that can only be queried through pairwise comparisons, so-called duels. PBO extend the applicability of standard BO ideas and generalizes previous discrete dueling approaches by modeling the probability of the the winner of each duel by means of Gaussian process model with a Bernoulli likelihood. The latent preference function is used to define a family of acquisition functions that extend usual policies used in BO. We illustrate the benefits of PBO in a variety of experiments in which we show how the way correlations are modeled is the key ingredient to drastically reduce the number of comparisons to find the optimum of the latent function of interest.
【Title】The Sample Complexity of Online One-Class Collaborative Filtering
【Abstract】We consider the online one-class collaborative filtering (CF) problem that consist of recommending items to users over time in an online fashion based on positive ratings only. This problem arises when users respond only occasionally to a recommendation with a positive rating, and never with a negative one. We study the impact of the probability of a user responding to a recommendation, , on the sample complexity, and ask whether receiving positive and negative ratings, instead of positive ratings only, improves the sample complexity. Both questions arise in the design of recommender systems. We introduce a simple probabilistic user model, and analyze the performance of an online user-based CF algorithm. We prove that after an initial cold start phase, where recommendations are invested in exploring the user’s preferences, this algorithm makes—up to a fraction of the recommendations required for updating the user’s preferences—perfect recommendations. The number of ratings required for the cold start phase is nearly proportional to ,, and that for updating the user’s preferences is essentially independent of ,. As a consequence we find that, receiving positive and negative ratings instead of only positive ones improves the number of ratings required for initial exploration by a factor of , which can be significant.
【Title】Provably Optimal Algorithms for Generalized Linear Contextual Bandits
【Abstract】Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many applications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an ) regret over T rounds with d dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases.
【Title】Deletion-Robust Submodular Maximization: Data Summarization with “the Right to be Forgotten”
【Abstract】How can we summarize a dynamic data stream when elements selected for the summary can be deleted at any time? This is an important challenge in online services, where the users generating the data may decide to exercise their right to restrict the service provider from using (part of) their data due to privacy concerns. Motivated by this challenge, we introduce the dynamic deletion-robust submodular maximization problem. We develop the first resilient streaming algorithm, called ROBUST-STREAMING, with a constant factor approximation guarantee to the optimum solution. We evaluate the effectiveness of our approach on several real-world applications, including summarizing (1) streams of geo-coordinates (2); streams of images; and (3) click-stream log data, consisting of 45 million feature vectors from a news recommendation task.
【Title】Probabilistic Submodular Maximization in Sub-Linear Time
【Abstract】In this paper, we consider optimizing submodular functions that are drawn from some unknown distribution. This setting arises, e.g., in recommender systems, where the utility of a subset of items may depend on a user-specific submodular utility function. In modern applications, the ground set of items is often so large that even the widely used (lazy) greedy algorithm is not efficient enough. As a remedy, we introduce the problem of sublinear time probabilistic submodular maximization: Given training examples of functions (e.g., via user feature vectors), we seek to reduce the ground set so that optimizing new functions drawn from the same distribution will provide almost as much value when restricted to the reduced ground set as when using the full set. We cast this problem as a two-stage submodular maximization and develop a novel efficient algorithm for this problem which offers approximation ratio for general monotone submodular functions and general matroid constraints. We demonstrate the effectiveness of our approach on several real-world applications where running the maximization problem on the reduced ground set leads to two orders of magnitude speed-up while incurring almost no loss.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。