当前位置:   article > 正文

Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第五次作业 第五章 Scala基础与编程

Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第五次作业 第五章 Scala基础与编程

  • 第五次作业

    • 1. 简述Scala语言的基本特性

      • 1. 面向对象:Scala是一种完全面向对象的语言。其每一种数据类型都是一个对象,这使得它具有非常统一的模型。

      • 2. 函数式编程:Scala同时支持函数式编程,它拥有高阶函数、闭包、不可变数据结构、递归等函数式编程的关键特性。

      • 3. 扩展性:Scala的语法非常灵活,允许开发者自定义运算符和语法糖。也支持模式匹配、类型推断和匿名函数等高级特性,这些都为编写简洁、高效的代码提供了可能。此外,Scala的语法允许在单个文件中定义类、对象、函数等,使得代码组织更加灵活。

      • 4. 并发性:Scala支持Actor模型(处理并发的轻量级机制)。通过Actor,可以编写出线程安全的、易于管理的并发代码,有效地利用多核处理器资源。

      • 5. 可以和Java混编:Scala运行在Java虚拟机(JVM)上,并兼容Java的API。可以直接使用Java库,或者在Scala代码中调用Java方法,反之亦然。这为已有的Java项目提供了无缝迁移到Scala的可能,也使得Scala成为一个非常实用的工具,可以在不完全重构的情况下逐步引入新的编程范式。

    • 2. 简述Scala语言的9种基本数据类型。 说明关键字Unit、Nothing、Any的含义。

      • Unit无返回值,通常用于不返回任何内容的方法。

      • Nothing是任何其他类型的子类,用于表示永远不会正常终止的程序部分。

      • Any是所有其他类型的超类(父类)

    • 3. 简述Scala中数组、列表、集合、元组、映射的名称及特点。

      • 数组(Array):固定大小的集合,元素类型相同,性能较好但不支持动态修改大小。

      • 列表(List):不可变的序列集合,适合于递归处理和模式匹配,但头部插入和删除效率低。

      • 集合(Set):无序且不重复元素的集合,分为可变和不可变两种。

      • 元组(Tuple):固定长度、不同类型的元素组合,最多支持22个元素,常用于同时携带多种类型信息。

      • 映射(Map):键值对的集合,键唯一,分为可变和不可变两种,适合快速查找。

    • 4. 举例说明匿名函数和高阶函数的含义,

      • 匿名函数

        • 也称为Lambda函数。箭头“=>”定义,箭头的左边是参数列表,箭头的右边是表达式,表达式的值即匿名函数的返回值。 在代码中直接定义的函数,没有具体的函数名。通常用于一些简单的、一次性的操作。

          • val sum = (x: Int, y: Int) => x + y

          • val result = sum(3, 5) /

          • / result = 8

      • 高阶函数

        • 高阶函数是指使用其他函数作为参数,或者返回一个函数作为结果的函数。

          • val numbers = List(1, 2, 3, 4)

          • val doubled = numbers.map(x => x * 2)

          • // doubled = List(2, 4, 6, 8)

    • 5. 阅读、分析下列程序段,并给出运行结果。

      1. (1)
      2. var v = 0
      3. for (i <- 1 to 9) {
      4. for (j <- 1 to i) {
      5. v = i*j
      6. print(f"$j%s*$i%s=$v%-3s")
      7. }
      8. println()
      9. }
      10. (2)
      11. val a = Array("Hello Spark","Hello Hadoop","Hello Scala")
      12. val b = a.flatMap(_.split(" ")).map((_,1)).groupBy(t => t._1).map(t => (t._1,t._2.length)).toList.sortBy(t => t._2).reverse
      13. b.foreach(x => println(x))
      14. (3)
      15. class Person(val namec:String,val agec:Int) {
      16. var name:String = namec
      17. var age:Int = agec
      18. def printPerson() : Unit = {
      19. printf(f"name:$name%8s, age:$age%-4d")
      20. }
      21. }
      22. object Test2 {
      23. def main(args:Array[String]):Unit = {
      24. val x = new Person("zhang",21)
      25. x.printPerson()
      26. }
      27. }
      28. (4)
      29. val a = List(("a",85),("b",95),("c",75),("a",95))
      30. a.groupBy(_._1)
      31. (5)
      32. val s = List("Spark","Python","Hadoop","HBase")
      33. s.foreach(e => print(e+" "))
      34. print(s.count(e => e.length == 5))
      1. (1) 九九乘法表
      2. 这段代码使用嵌套循环打印九九乘法表。外层循环控制行数,内层循环控制每行打印的乘法算式。
      3. 运行结果:
      4. ```
      5. 1*1=1
      6. 1*2=2 2*2=4
      7. 1*3=3 2*3=6 3*3=9
      8. ...
      9. 1*9=9 2*9=18 3*9=27 ... 8*9=72 9*9=81
      10. ```
      11. (2) 单词计数
      12. 这段代码统计字符串数组中每个单词出现的次数,并按出现次数降序排列。
      13. 步骤解析:
      14. 1. `flatMap(_.split(" "))`:将每个字符串按空格分割成单词列表,并合并成一个新的列表。
      15. 2. `map((_,1))`:将每个单词映射成一个元组,元组的第一个元素是单词本身,第二个元素是 1
      16. 3. `groupBy(t => t._1)`:按照单词分组。
      17. 4. `map(t => (t._1,t._2.length))`:统计每个单词出现的次数。
      18. 5. `toList.sortBy(t => t._2).reverse`:将结果转换为列表,并按出现次数降序排列。
      19. 运行结果:
      20. ```
      21. (Hello,3)
      22. (Spark,1)
      23. (Scala,1)
      24. (Hadoop,1)
      25. ```
      26. (3) 类定义与对象创建
      27. 这段代码定义了一个 `Person` 类,并创建了一个 `Person` 对象,然后调用该对象的 `printPerson` 方法打印信息。
      28. 运行结果:
      29. ```
      30. name:zhang , age:21
      31. ```
      32. (4) 按第一个元素分组
      33. 这段代码将列表 `a` 按照元组的第一个元素分组。
      34. 结果:
      35. ```
      36. Map(a -> List((a,85), (a,95)), b -> List((b,95)), c -> List((c,75)))
      37. ```
      38. (5) 字符串操作
      39. 这段代码遍历字符串列表 `s` 并打印每个元素,然后统计长度为 5 的字符串个数。
      40. 运行结果:
      41. ```
      42. Spark Python Hadoop HBase 2
      43. ```

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/519284
推荐阅读
相关标签
  

闽ICP备14008679号