当前位置:   article > 正文

使用System-Verilog实现FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能

使用System-Verilog实现FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能


前言

环境

  1. 硬件 DE2-115 HC-SR04超声波传感器

  2. 软件 Quartus 18.1

目标结果

使用DE2-115开发板驱动HC-SR04模块,并将所测得数据显示到开发板上的数码管。

模拟倒车雷达,集成蜂鸣器,led和vga提示功能

  1. 蜂鸣器提示小于20cm1s一响小于10cm0.5s一响
  2. LED提示小于20cm全亮提示
  3. VGA提示小于20cm ,显示 警告warning 图片

小tips:
VSCODE插件安装一波
在这里插入图片描述


一、实验原理

1.1 传感器概述:

HC-SR04超声波距离传感器的核心是两个超声波传感器。一个用作发射器,将电信号转换为40 KHz超声波脉冲。接收器监听发射的脉冲。如果接收到它们,它将产生一个输出脉冲,其宽度可用于确定脉冲传播的距离。就是如此简单!该传感器体积小,易于在任何机器人项目中使用,并提供2厘米至400厘米(约1英寸至13英尺)之间出色的非接触范围检测,精度为3mm。

在这里插入图片描述

1.2 传感器引脚

在这里插入图片描述

  • VCC 是HC-SR04超声波距离传感器的电源

  • Trig 引脚用于触发超声波脉冲

  • Echo 回声当接收到反射信号时,引脚产生一个脉冲。脉冲的长度与检测发射信号所需的时间成正比

  • GND 用于接地

1.3 传感器工作原理

当持续时间至少为10 µS(10微秒)的脉冲施加到触发引脚时,一切就开始了。响应于此,传感器以40 KHz发射八个脉冲的声音脉冲。这种8脉冲模式使设备的“超声特征”变得独一无二,从而使接收器能够将发射模式与环境超声噪声区分开。八个超声波脉冲通过空气传播,远离发射器。同时,回声引脚变为高电平,开始形成回声信号的开始。如果这些脉冲没有被反射回来,则回波信号将在38毫秒后超时并返回低电平。因此38 ms的脉冲表示在传感器范围内没有阻塞。
在这里插入图片描述如果这些脉冲被反射回去,则在收到信号后,Echo引脚就会变低。这会产生一个脉冲,其宽度在150 µS至25 mS之间变化,具体取决于接收信号所花费时间。

在这里插入图片描述

HC-SR04的时序图如下:
在这里插入图片描述

通过时序图我们可以知道,我们给HC-SR04发送长达 10us 的TTL脉冲,然后模块就会进行测距,测距的结果通过回响信号传达,回响的TTL电平信号时间即是超声波从HC-SR04模块发出,触碰到障碍物后返回到HC-SR04模块的时间总和。

TTL是逻辑电平标准,当电压达到2.4V-5V之间,那么为逻辑1(高电平),电压在0V~0.4V之间,那么为逻辑0(低电平)。所以我们可以直接通过GPIO口来输出以及输入时序所需的电平信号。

然后,将接收到的脉冲的宽度用于计算到反射物体的距离。这可以通过我们在初中学到的简单的距离-速度-时间方程来解决。

距离=速度x时间 ,当然温度,以及环境噪声等对实验结果都有影响,因此公式应在不同环境下进行修改

总所周知,声音的速度为340m/s,因此我们将回响电平的时间除340再除2之后得到的就是单位为米的测距结果。

1.4 整体测距原理及编写思路

在这里插入图片描述
编写思路:

以上时序图表明我们只需要提供一个10uS以上脉冲触发信号,该模块内部将发出8个40kHz周期电平并检测回波。一旦检测到有回波信号则输出回响信号。
回响信号的脉冲宽度与所测的距离成正比。此通过发射信号到收到的回响信号时间间隔可以计算得到距离。公式:uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2:建议测量周期为60ms以上,以防止发射信号对回响信号的影响。

结合说明书我们可以知道,我们仅需提供10us的高电平给Trig口即可。然后HC-SR04在测量完毕之后会将结果通过Echo回响回来。

所以我们只需要将Trig口拉高,等待10us(最好再延长一些,代码中用的是15us)后再拉低即可。

接着就只需要等待Echo将数据传输回来,通过时序图我们可以得知回响信号是拉高Echo口,再拉低,中间持续的时间就是测距的结果。

所以我们给Echo口配置一个中断事件,设置为上跳变下跳变都触发,另外再用一个变量记录Echo口到底是拉高还是拉低即可。

如果是拉高,那么我们需要记录下持续的时间,这时候我们需要用定时器计时,所以需要在一开始的时候就配置好定时器的初始化。唯一的问题就是该如何配置定时器的预分频器和自动重装器了。

根据说明书我们可以知道HC-SR04的精度为3mm,而测距的公式为 us/58-cm,稍加计算可知,如果我们需要测量3mm,那么得到的时间为17.4us,以此为一个刻度,那么定时器的频率应该为57471Hz。然而这样太麻烦了,而且也不好用,因此我们可以随意一些,我在代码中使用的是预分频器为72,自动重装器为100,那么得到的频率为72MHz/72/100=1000Hz,也就是一次定时器中断的时间为100us,而自动重装器里的每一个值就是1us,所以每次外部中断的下降沿触发之后只需要将定时器触发的次数*100再加上自动重装器里的值就可以得到回响信号的持续时间了,单位是us。

二、System-Verilog文件

2.1 时钟分频

(1)clk_div.sv

定义时钟分频模块,产生周期为1us的时钟信号
clk_div.sv

// //产生一个以微秒为周期的时钟信号clk_us,该信号可用于驱动一些需要精确时间控制的电路
module clk_div(
    input logic Clk,           // 输入系统时钟,50MHz
    input logic Rst_n,         // 输入复位信号,低电平有效
    
    output logic clk_us        // 输出微秒级时钟信号
);

    // 参数声明 1us = 1000ns = 50个时钟周期
    parameter int CNT_MAX = 19'd50;  //1us的计数值为 50 * Tclk(20ns)

    // 内部线网/寄存器声明
    logic [18:0] cnt;          // 定义一个19位的计数器
    logic add_cnt;             // 计数器使能信号
    logic end_cnt;             // 计数器结束信号,达到最大值时有效

    // 计数器的寄存器逻辑
    always_ff @(posedge Clk, negedge Rst_n) begin
        if (!Rst_n) begin       // 如果复位信号有效,则计数器清零
            cnt <= '0; 
        end
        else if (add_cnt) begin // 如果计数器达到最大值,则计数器重置
            if (end_cnt) begin
                cnt <= '0; 
            end
            else begin          // 否则计数器继续计数
                cnt <= cnt + 1'b1; 
            end
        end
        else begin
            cnt <= cnt;         // 如果计数器未使能,则保持当前值
        end
    end

    // 赋值计数器使能信号,始终使计数器有效
    assign add_cnt = 1'b1; 
    // 赋值计数器结束信号,当计数器使能并且计数值达到CNT_MAX - 1时有效
    assign end_cnt = add_cnt && cnt >= CNT_MAX - 19'd1;
    // 赋值输出时钟信号,当计数器达到最大值时输出一个脉冲
    assign clk_us = end_cnt;

endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

2.2 超声波测距

  • 实现HC-SR04超声波传感器的触发模块,用于生成触发测距信号(trig)
  • 定义HC-SR04超声波传感器的回声模块,用于测量距离并输出检测距离数据(data_o)

(1)hc_sr_trig.sv

hc_sr_trig.sv:

// hc_sr_trig 模块定义开始,用于生成超声波触发信号
//   Description  ﹕超声波触发测距模块
// 波形周期 300ms,前 15us 高电平
module hc_sr_trig (
    input logic clk_us,    // 输入 1MHz 系统时钟
    input logic Rst_n,     // 输入复位信号,低电平有效
    
    output logic trig      // 输出触发测距信号
);

    // 参数声明 300_000*1_000ns = 3 *10^8ns = 0.3s = 300ms
    // 波形周期 300ms,前 10us 高电平
    // 建议测量周期为 60ms 以上,以防止发射信号对回响信号的影响。
    parameter int CYCLE_MAX = 19'd300_000; // 定义触发信号的一个周期计数,基于 1MHz 时钟

    // 内部线网/寄存器声明
    logic [18:0] cnt;       // 计数器,用于生成触发信号的时间控制
    logic add_cnt;          // 计数器使能信号
    logic end_cnt;          // 计数器结束信号,达到预定义周期时有效

    // 计数器逻辑,用于控制触发信号的产生
    always_ff @(posedge clk_us, negedge Rst_n) begin
        if (!Rst_n) begin    // 如果复位信号有效,则计数器清零
            cnt <= '0;
        end else if (add_cnt) begin  // 如果计数器使能
            if (end_cnt) begin       // 如果计数器达到预定义的最大周期
                cnt <= '0;           // 计数器重置
            end else begin
                cnt <= cnt + 1'b1;   // 否则计数器递增
            end
        end else begin
            cnt <= cnt;              // 如果计数器未使能,则保持当前值
        end
    end

    assign add_cnt = 1'b1;           // 赋值计数器使能信号,始终使计数器有效
    assign end_cnt = add_cnt && (cnt == CYCLE_MAX - 9'd1); // 赋值计数器结束信号,当计数器值达到 CYCLE_MAX - 1 时有效

    // 赋值触发信号,当计数器值小于 15 时,输出高电平,作为触发
    // cnt < 15 置为高电平,表示前 15us 为高电平,作为触发信号
    // 此逻辑基于 HC-SR04 模块的触发信号需求,通常为 10 微秒的高电平
    assign trig = (cnt < 15) ? 1'b1 : 1'b0;

    /*
        计数器 cnt 用于生成持续一定时间的触发信号 trig。当计数器小于 15 时,trig 为高电平,表示触发信号是活跃的。
        计数器在每个 1MHz 时钟的上升沿递增,当计数器达到设定的最大周期 CYCLE_MAX 时,计数器重置,重新开始计数。
        这样,trig 信号就会周期性地输出高电平脉冲,以满足 HC-SR04 超声波传感器的触发需求。
    */

endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

(2)hc_sr_echo.sv

hc_sr_echo.sv

// 处理HC-SR04超声波传感器的回声信号,并计算距离
//   Description  ﹕超声波检测距离模块
// 本模块理论测试距离 2cm~510cm
// 输出结果保留两位小数
module hc_sr_echo
(
    input logic Clk,        // 输入50MHz时钟信号
    input logic clk_us,     // 输入1MHz系统时钟信号
    input logic Rst_n,      // 输入复位信号,低电平有效
    
    input logic echo,       // 输入超声波回声信号
    output logic [18:0] data_o  // 输出检测到的距离,以厘米为单位,保留三位小数
);

/* 		S(um) = 17 * t 		-->  x.abc cm	*/
//Parameter Declarations
    parameter T_MAX = 16'd60_000; // 定义计数器的最大值,对应510厘米

    logic r1_echo, r2_echo;  // 用于边沿检测的寄存器
    logic echo_pos, echo_neg;  // 回声信号的上升沿和下降

    logic [15:0] cnt;  // 1MHz时钟下的计数器,用于测量回声脉冲宽度
    logic add_cnt;  // 计数器使能信号
    logic end_cnt;  // 计数器结束信号
    
    logic [18:0] data_r;  // 距离数据的中间寄存器

    // 逻辑描述
    // 使用50MHz时钟检测回声信号的边沿,以避免使用1MHz时钟导致的2us延时
    always_ff @(posedge Clk or negedge Rst_n) begin
        if (!Rst_n) begin
            r1_echo <= 1'b0;
            r2_echo <= 1'b0;
        end
        else begin
            r1_echo <= echo;
            r2_echo <= r1_echo;
        end
    end

    // 产生上升沿和下降沿信号
    assign echo_pos = r1_echo & ~r2_echo;  // 回声信号上升沿
    assign echo_neg = ~r1_echo & r2_echo;  // 回声信号下降沿
    
    // 计数器逻辑,用于测量回声脉冲宽度
    always_ff @(posedge clk_us or negedge Rst_n) begin
        if (!Rst_n) begin
            cnt <= '0; 
        end
        else if (add_cnt) begin
            if (end_cnt) begin
                cnt <= cnt;  // 如果达到最大测量范围,则保持当前计数值
            end
            else begin
                cnt <= cnt + 1'b1; // 否则计数器递增
            end
        end
        else begin  // 如果回声信号低电平,计数器归零
            cnt <= '0;
        end
    end
    
    assign add_cnt = echo; // 赋值计数器使能信号,当回声信号为高电平时使能计数器
    assign end_cnt = add_cnt && cnt >= T_MAX - 1; //赋值计数器结束信号,当计数器达到最大值T_MAX时有效 超出最大测量范围则保持不变,极限

    // 测试距离=(高电平时间*声速(340M/S))/2;
    // 距离数据处理逻辑,将计数值转换为距离
    always_ff @(posedge Clk or negedge Rst_n) begin
        if (!Rst_n) begin
            data_r <= 'd2;  // 复位时中间寄存器置为2,用于小数点后三位的计算
        end
        else if (echo_neg) begin
            // 当回声信号下降沿到来时,将计数值左移四位并加上自身,实现小数点后三位的计算
            //t = cnt*1000ns = cnt*10-6s
            //s = 340*t m
            data_r <= (cnt << 4) + cnt;
        end
        else begin
            data_r <= data_r;  // 否则保持当前值
        end
    end

    // 将中间寄存器的数据右移一位,实现除以2的操作,得到最终的距离数据
    assign data_o = data_r >> 1;

endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

2.3 数码管驱动

查看平台手册,发现DE2-115开发板不涉及位选信号,每个段选信号都有一个单独的引脚。在这里插入图片描述
数码管驱动器模块代码如下,用于将输入的数据(data_o)转换为对应的数码管显示:

(1)seg_driver.sv

seg_driver:


// seg_driver模块用于驱动七段显示器,显示数字或特定的符号。
module seg_driver(
    input   logic       Clk,     // 输入的时钟信号。
    input   logic       Rst_n,   // 低电平有效的复位信号。
    input   logic [18:0] data_o, // 输入的数字数据,这里假设是测得的距离数据。
    output  logic [6:0]  hex1,   // 第1个七段显示器的段选信号输出。
    output  logic [6:0]  hex2,   // 第2个...
    output  logic [6:0]  hex3,
    output  logic [6:0]  hex4,
    output  logic [6:0]  hex5,
    output  logic [6:0]  hex6,
    output  logic [6:0]  hex7,
    output  logic [6:0]  hex8     
);

// 参数定义区,定义了特殊显示值和小数点的编码,以及计数器的最大值。
parameter NOTION  = 4'd10,  // 定义数字"10"用于消隐的编码。
         FUSHU   = 4'd11,  // 定义数字"11"用作小数点的编码。
         MAX20us = 10'd1000; // 定义20微秒计数器的最大值。

// 寄存器声明区,声明了用于控制和显示数字的内部寄存器。
logic [9:0]   cnt_20us;  // 用于动态扫描定时的20微秒计数器。
logic [7:0]   sel_r;     // 动态扫描控制的片选信号寄存器。
logic [3:0]   number;    // 要显示的数字,范围0-9或特殊编码。
logic [6:0]   seg_r;     // 根据number解析得到的七段显示器段选编码。

// 每个七段显示器的段选编码寄存器,用于存储最终输出到显示器的段选编码。
logic [6:0]   hex1_r,   hex2_r,   hex3_r,   hex4_r,   hex5_r,   hex6_r,   hex7_r,   hex8_r;

// 20微秒计数器始终块,用于周期性地重置计数器来实现动态扫描。
always_ff @(posedge Clk or negedge Rst_n) begin
    if (!Rst_n) begin
        cnt_20us <= 0;  // 复位时计数器清零。
    end
    else if (cnt_20us == (MAX20us - 1)) begin
        cnt_20us <= 0;  // 计数器达到最大值时重置。
    end
    else begin
        cnt_20us <= cnt_20us + 1;  // 否则计数器递增。
    end
end

// 动态扫描控制始终块,用于生成选择当前激活的七段显示器的片选信号。
always_ff @(posedge Clk or negedge Rst_n) begin
    if (!Rst_n) begin
        sel_r <= 8'b11_11_11_10;  // 复位时初始化片选信号。
    end
    else if (cnt_20us == (MAX20us - 1)) begin
        sel_r <= {sel_r[6:0], sel_r[7]};  // 计数器达到最大值时,片选信号左移循环。
    end
    else begin
        sel_r <= sel_r;  // 否则保持当前片选信号不变。
    end
end

// 组合逻辑块,根据片选信号sel_r获取要显示的数字。
always_comb begin
    case (sel_r)
        // 根据sel_r的值选择对应的数字或特殊编码。
        // 这些编码对应于输入数据data_o的不同部分。
        // ...(此处省略了部分case语句)
        default: number = 4'd0;  // 默认情况下不显示任何数字。
    endcase
end

// 组合逻辑块,根据数字解析出对应的七段显示器段选值seg_r。
always_comb begin
    case (number)
        // 对应数字0-9的七段显示器编码。
        // ...(此处省略了部分case语句)
        NOTION: seg_r = 7'b111_1111;  // 消隐编码,所有段都不亮。
        FUSHU: seg_r = 7'b011_1111;  // 小数点编码,只点亮小数点部分。
        default: seg_r = 7'b111_1111;  // 默认消隐。
    endcase
end

// 组合逻辑块,根据片选信号sel_r将seg_r值赋给对应的七段显示器寄存器。
always_comb begin
    // 初始化所有寄存器为消隐状态。
    hex1_r = 7'b111_1111;
    hex2_r = 7'b111_1111;
    hex3_r = 7'b111_1111;
    hex4_r = 7'b111_1111;
    hex5_r = 7'b111_1111;
    hex6_r = 7'b111_1111;
    hex7_r = 7'b111_1111;
    hex8_r = 7'b111_1111;

    // 根据当前选中的显示器,将seg_r的值赋给对应的寄存器。
    case (sel_r)
        8'b11_11_11_10: hex1_r = seg_r;
        8'b11_11_11_01: hex2_r = seg_r;
        // ...(此处省略了部分case语句)
        default: ;
    endcase
end

// 将寄存器的值通过assign语句输出到端口,连接到外部的七段显示器硬件。
assign  hex1 = hex1_r;
assign  hex2 = hex2_r;
assign  hex3 = hex3_r;
assign  hex4 = hex4_r;
assign  hex5 = hex5_r;
assign  hex6 = hex6_r;
assign  hex7 = hex7_r;
assign  hex8 = hex8_r;

endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109

2.4 VGA驱动

(1)vga_dirve.sv

vga_dirve.sv:

module vga_dirve (
    input logic clk,            // 系统时钟
    input logic rst_n,          // 复位
    input logic [23:0] rgb_data, // 16位RGB对应值

    output logic vga_clk,    // vga时钟 25M
    output logic h_sync,     // 行同步信号
    output logic v_sync,     // 场同步信号
    output logic [11:0] addr_h, // 行地址
    output logic [11:0] addr_v,  // 列地址
    output logic [7:0] rgb_r,  // 红基色
    output logic [7:0] rgb_g,  // 绿基色
    output logic [7:0] rgb_b  // 蓝基色
);

// 640 * 480 60HZ
localparam int H_FRONT = 16; // 行同步前沿信号周期长
localparam int H_SYNC = 96;  // 行同步信号周期长
localparam int H_BLACK = 48; // 行同步后沿信号周期长
localparam int H_ACT = 640;   // 行显示周期长
localparam int V_FRONT = 11; // 场同步前沿信号周期长
localparam int V_SYNC = 2;   // 场同步信号周期长
localparam int V_BLACK = 31; // 场同步后沿信号周期长
localparam int V_ACT = 480;  // 场显示周期长

// 800 * 600 72HZ (已注释,使用640*480)
// ...

localparam int H_TOTAL = H_FRONT + H_SYNC + H_BLACK + H_ACT; // 行周期
localparam int V_TOTAL = V_FRONT + V_SYNC + V_BLACK + V_ACT; // 列周期

logic [11:0] cnt_h; // 行计数器
logic [11:0] cnt_v; // 场计数器
logic [23:0] rgb;  // 对应显示颜色值

// 对应计数器开始、结束、计数信号
logic flag_enable_cnt_h, flag_clear_cnt_h, flag_enable_cnt_v, flag_clear_cnt_v, flag_add_cnt_v, valid_area;

// 25M时钟 行周期*场周期*刷新率 = 800 * 525* 60
logic clk_25;
// 50M时钟 1040 * 666 * 72
// ...

// PLL实例化生成时钟
pll pll_inst (
    .areset(~rst_n),
    .inclk0(clk),
    .c0(clk_50), // 50M
    .c1(clk_25)  // 25M
);

// 根据不同分配率选择不同频率时钟
assign vga_clk = clk_25;

// 行计数
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        cnt_h <= 0;
    end else if (flag_enable_cnt_h) begin
        cnt_h <= flag_clear_cnt_h ? 0 : cnt_h + 1;
    end
end

// 行同步信号
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        h_sync <= 0;
    end else if (cnt_h == H_SYNC - 1) begin
        h_sync <= 1;
    end else if (flag_clear_cnt_h) begin
        h_sync <= 0;
    end
end

// 场计数
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        cnt_v <= 0;
    end else if (flag_enable_cnt_v) begin
        cnt_v <= flag_clear_cnt_v ? 0 : cnt_v + flag_add_cnt_v;
    end
end

// 场同步信号
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        v_sync <= 0;
    end else if (cnt_v == V_SYNC - 1) begin
        v_sync <= 1;
    end else if (flag_clear_cnt_v) begin
        v_sync <= 0;
    end
end

// 对应有效区域行地址 1-640
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        addr_h <= 0;
    end else if (valid_area) begin
        addr_h <= cnt_h - H_SYNC - H_BLACK + 1;
    end
end

// 对应有效区域列地址 1-480
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        addr_v <= 0;
    end else if (valid_area) begin
        addr_v <= cnt_v - V_SYNC - V_BLACK + 1;
    end
end

// 有效显示区域
assign valid_area = cnt_h >= H_SYNC + H_BLACK && cnt_h <= H_SYNC + H_BLACK + H_ACT &&
                    cnt_v >= V_SYNC + V_BLACK && cnt_v <= V_SYNC + V_BLACK + V_ACT;

// 显示颜色
always_ff @(posedge vga_clk or negedge rst_n) begin
    if (!rst_n) begin
        rgb <= 24'b0;
    end else if (valid_area) begin
        rgb <= rgb_data;
    end
end

assign rgb_r = rgb[23:16];
assign rgb_g = rgb[15:8];
assign rgb_b = rgb[7:0];

endmodule // vga_dirve






  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136

三、实现过程

3.1 模块说明

这里要求超声波模块的正负极分别接入5V和GND,其余trigger和echo自由接线,我这里使用的是GPIO[0]和GPIO[1]

在这里插入图片描述

3.2 引脚分配

首先这里提出引脚配置,其中trig和echo引脚与自己所接线的位置向同即可在这里插入图片描述

配置文件如下:
在这里插入图片描述
在这里插入图片描述

三、演示视频

使用System-Verilog实现FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能


总结

在本项目中,我成功实现了基于FPGA DE2-115开发板的HC-SR04超声波测距模块。通过使用SystemVerilog语言,我们设计并实现了时钟分频、超声波测距、数码管驱动以及VGA驱动等多个关键模块。这些模块协同工作,实现了超声波测距的基本功能,并将测量结果显示在数码管上,同时集成了蜂鸣器、LED和VGA提示功能,增强了用户体验。

关键实现点:

  1. 时钟分频模块 (clk_div.sv):生成周期为1us的时钟信号,为系统提供精确的时间控制。
  2. 超声波测距模块 (hc_sr_trig.sv 和 hc_sr_echo.sv):负责触发测距信号并处理回声信号,计算出距离。
  3. 数码管驱动模块 (seg_driver.sv):将测得的距离数据转换为数码管可以显示的格式。
  4. VGA驱动模块 (vga_dirve.sv):负责生成VGA信号,并在屏幕上显示警告图片,提供视觉反馈。

集成功能:

  1. 蜂鸣器提示小于20cm1s一响小于10cm0.5s一响
  2. LED提示小于20cm全亮提示
  3. VGA提示小于20cm ,显示 警告warning 图片

测试与验证:
通过在DE2-115开发板上的实际测试,我们验证了系统的测距功能和各种提示功能的准确性。展示了超声波测距模块的基本实现和扩展应用的可能性。

结论:
本项目不仅加深了对FPGA和SystemVerilog的理解,而且通过实际应用提高了解决实际问题的能力。虽然在实现过程中参考了前辈的代码,但能够补全并改进代码,对我来说是一次宝贵的学习和成长经历。期待在未来的项目中继续探索和创新。

参考

FPGA基于DE2-115 开发板板和HC_SR04驱动的超声波测距

基于DE2 115开发板驱动HC_SR04超声波测距模块

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/666535
推荐阅读
相关标签
  

闽ICP备14008679号