赞
踩
蚁群算法是一种智能优化算法,通过蚁群优化求解复杂问题,ACO在离散优化问题方面有比较好的优越性。
蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
单只蚂蚁的行为及其简单,行为数量在10种以内,但成千上万只蚂蚁组成的蚁群却能拥有巨大的智慧,这离不开它们信息传递的方式——信息素。
蚂蚁在行走过程中会释放一种称为“信息素”的物质,用来标识自己的行走路径。在寻找食物的过程中,根据信息素的浓度选择行走的方向,并最终到达食物所在的地方。
信息素会随着时间的推移而逐渐挥发。
在一开始的时候,由于地面上没有信息素,因此蚂蚁们的行走路径是随机的。蚂蚁们在行走的过程中会不断释放信息素,标识自己的行走路径。随着时间的推移,有若干只蚂蚁找到了食物,此时便存在若干条从洞穴到食物的路径。由于蚂蚁的行为轨迹是随机分布的,因此在单位时间内,短路径上的蚂蚁数量比长路径上的蚂蚁数量要多,从而蚂蚁留下的信息素浓度也就越高。这为后面的蚂蚁们提供了强有力的方向指引,越来越多的蚂蚁聚集到最短的路径上去。
(1)高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有相互的通信和信息传递。
(2)自然优化——蚁群在觅食过程中,在没有任何提示下总能找到从蚁巢到食物源之间的最短路径;当经过的路线上出现障碍物时,还能迅速找到新的最优路径。
(3)信息正反馈——蚂蚁在寻找食物时,在其经过的路径上释放信息素(外激素)。蚂蚁基本没有视觉,但能在小范围内察觉同类散发的信息素的轨迹,由此来决定何去何从,并倾向于朝着信息素强度高的方向移动。
(4)自催化行为——某条路径上走过的蚂蚁越多,留下的信息素也越多(随时间蒸发一部分),后来蚂蚁选择该路径的概率也越高。
(1)根据具体问题设置多只蚂蚁,分头并行搜索。
(2)每只蚂蚁完成一次周游后,在行进的路上释放信息素,信息素量与解的质量成正比。
(3)蚂蚁路径的选择根据信息素强度大小(初始信息素量设为相等),同时考虑两点之间的距离,采用随机的局部搜索策略。这使得距离较短的边,其上的信息素量较大,后来的蚂蚁选择该边的概率也较大。
(4)每只蚂蚁只能走合法路线(经过每个城市1次且仅1次),为此设置禁忌表来控制。
(5)所有蚂蚁都搜索完一次就是迭代一次,每迭代一次就对所有的边做一次信息素更新,原来的蚂蚁死掉,新的蚂蚁进行新一轮搜索。
(6)更新信息素包括原有信息素的蒸发和经过的路径上信息素的增加。
(7)达到预定的迭代步数,或出现停滞现象(所有蚂蚁都选择同样的路径,解不再变化),则算法结束,以当前最优解作为问题的最优解。
假设5个城市的TSP问题,然由于某种原因,城市道路均是单行道,即A->B和B->A的距离不相同,也就是说这是一个不对称的TSP问题。现在城市距离信息如下表:
根据初始化信息素得到初始化信息素矩阵
启发式矩阵
对每个节点求对应的参数,首先求第一次迭代第一只蚂蚁:
第一次迭代第二只蚂蚁:
第一次迭代第三只蚂蚁:
第一次迭代第四只蚂蚁:
第一次迭代第五只蚂蚁:
第一次迭代完成,更新信息素矩阵,信息素挥发系数为0.5。
至此,第一代蚂蚁全部周游完成,重新随机生成第二代蚂蚁进行迭代。
第二次迭代第一只蚂蚁:
第二次迭代第二只蚂蚁:
第二次迭代第三只蚂蚁:
第二次迭代第四只蚂蚁:
第二次迭代第五只蚂蚁:
当出现停滞现象的时候,说明已经得到最优解,算法结束。
我们发现在第二次迭代的时候,五只蚂蚁走的是同一条路,所以算法收敛结束。
最优路径A->E->D->C->B->A, 最优路径的距离为9.
蚁群算法是一种基于多主体的智能算法,不是单个蚂蚁行动,而是多个蚂蚁同时搜索,具有分布式的协同优化机制。
本质上属于随机搜索算法(概率算法),具有概率搜索的特征。
是一种全局搜索算法,能够有效地避免局部最优。
(1)较强的鲁棒性——稍加修改即可应用于其他问题;
(2)分布式计算——本质上具有并行性;
(3)易于与其他启发式算法结合。
转载自:
https://www.imooc.com/article/23910?block_id=tuijian_wz
http://www.dataguru.cn/article-11200-1.html
https://www.cnblogs.com/tao-alex/p/6094483.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。