当前位置:   article > 正文

机器学习和深度学习--李宏毅(笔记与个人理解)Day17

机器学习和深度学习--李宏毅(笔记与个人理解)Day17

Day 17Convolutional Neyral Network (CNN)

卷积神经网络一般都用在image 上面比较多一些,所以课程的例子大多数也都是image

Image Classification

the same size

image-20240412211301843

how about for pc?

image-20240412211342138

这里对于tensor 张量这个概念,我还是比较奇怪,在我认为一个矩阵也可以表示三维的空间;为什么引入tensor这个概念;

听完那个课程我悟了,tensor作为多维数组来说,更具有高维空间的特性;就拿上面的图片举例子,extremely case 我们取一维向量来表示(铺开),这样就会丢失一些空间的信息,例如绿色的格子和蓝色的某个格子其实是垂直的,仅仅相差一个垂直距离,但是展开为一根棍就很难找到这种关联

向量中某一个格子的数值表示该种颜色的强度

image-20240412211930832

好了我猜你紧接着就要说,啊啊啊这个什么weight 太大了,更新一次太麻烦啦巴拉巴拉的

Do we need “fully connected” in image processing ?

so we need some observations

Obervation1

image-20240412212206562

so not whole image ,but some patternsimage-20240412212406363

Simplification 1

image-20240412212555144

image-20240412212633482 image-20240412212645343 image-20240412213701721 image-20240412213728428

Typical Setting

image-20240412214032754

Obervation 2

image-20240412214152444
Simplification 2 sharing parameters
image-20240412214342635

Typical

image-20240412214444443

有了两种简化的方式了,我们来总结一下我们学到了什么

image-20240413201443821

CNN 的model 的bias比较大

Fully connected Layer jack of all trades master of none

Another Story

image-20240413201828912

image-20240413201924317 image-20240413202026650 image-20240413202045005 image-20240413202106520 image-20240413202133876

image-20240413202256514

这张ppt好好理解一下, 理解不了的话我给你讲讲:

首先按照Convolution 分为上下两个 part 哈,上面那个是由64个fitter (高度/厚度 =1, 因为原始图像的channel =1 是黑白图像,这里我们考虑typical的情况) 分别对原image做卷积得到的;每一个高度可以作为一个feature Map;ok ,然后我们知道 RGB 其实也是一个图像的三个channel 三个 feature Map;那么我们自然而然的认为这个厚度为64的feature map 叠起来的厚吐司 也是一个64channel 的图像;迭代为原始图像,那么下一次进行卷积的时候我们就需要64个厚度为64的fitter,也就是下面的两个64 的不同含义~ ok,打完收工

一个问题,如果fitter 一直等于 3*3 会不会严重丢失全局信息?为什么?

  • 我认为和stride有关,一直有重叠
  • 更直接的解释 从 3 * 3 到 5 * 5
image-20240413203018839

殊途同归

image-20240413203232320

boy 聪明的,比较颜色就好~ 要学会适度自学哦

image-20240413203338279

image-20240413203429558

Observation 3

image-20240413203530845
Simpification 3(Pooling)
image-20240413203649322 image-20240413203928352

subSampling 会丢失一定的信息,随着 计算机上升,下采样逐渐式微

The whole CNN……

image-20240413204126742

Flatten 拉直

Application-- 阿尔法狗

image-20240413204317466

so why CNN?

image-20240413204451266

当成一个图片,然后48个channel 表示该点处的48种情况

image-20240413204618575 image-20240413204912641 image-20240413204928830

more thinking :

CNN 好像没有办法处理影响放大缩小,或者反转的情况;so we need data augmentation ;

Spatial Transformer Layer

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/465820
推荐阅读
相关标签
  

闽ICP备14008679号