赞
踩
CNN-BiLSTM-Attention多输入多输出回归预测 基于卷积神经网络-双向长短期记忆网络结合SE注意力机制的多输入多输出预测 注释清晰 Matlab语言
1.CNN-BiLSTM-Attention多输出回归预测,多输入多输出 , matlab需要2020b及以上版本 评价指标包括:R2、MAE等,效果如图所示,代码质量极高~
2.直接替换数据即可用,适合新手小白~
3.附赠案例数据,如图所示,实际使用中3个、4个输出均可 直接运行main即可一键出图~
miniBatchSize = 32; options = trainingOptions("adam", ... MaxEpochs=3, ... MiniBatchSize=miniBatchSize, ... InitialLearnRate=0.005, ... LearnRateDropPeriod=2, ... LearnRateSchedule="piecewise", ... L2Regularization=5e-4, ... SequencePaddingDirection="left", ... Shuffle="every-epoch", ... ValidationFrequency=floor(numel(featuresTrain)/miniBatchSize), ... ValidationData={featuresValidation,labelsValidation}, ... Verbose=false, ... Plots="training-progress"); net = trainNetwork(featuresTrain,labelsTrain,layers,options); function features = extractFeatures(X,afe) features = log(extract(afe,X) + eps); features = permute(features, [2 3 1]); features = {features}; end
MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。