当前位置:   article > 正文

SQLAIchemy 异步DBManager封装-01入门理解

SQLAIchemy 异步DBManager封装-01入门理解

前言

SQLAlchemy 是一个强大的 Python SQL 工具包和对象关系映射(ORM)系统,是业内比较流行的ORM,设计非常优雅。随着其2.0版本的发布,SQLAlchemy 引入了原生的异步支持,这极大地增强了其在处理高并发和异步I/O场景下的能力。通过结合像greenlet、gevent这样的协程库,SQLAlchemy 使得异步数据库操作成为可能,从而提高了应用程序的性能和响应速度。

这里我将基于SQLAlchemy的异步支持,封装一些常用的增删改查(CRUD)操作到 https://github.com/HuiDBK/py-tools 中,以便在项目开发中更加便捷地使用。

Github: https://github.com/sqlalchemy/sqlalchemy

2.0文档:https://docs.sqlalchemy.org/en/20/index.html

简单使用

封装前,先简单介绍下如何使用 SQLAIchemy。

具体细节可以参考官网文档:https://docs.sqlalchemy.org/en/20/orm/quickstart.html

安装依赖

pip install sqlalchemy[asyncio]==2.0.20
pip install aiomysql==0.2.0
  • 1
  • 2

这里安装了 sqlalchemy 2.0版本,以及 aiomysql 异步数据库驱动,进行演示。

创建异步数据库引擎

from sqlalchemy.ext.asyncio import create_async_engine  

# db_uri = "{protocol}://{user}:{password}@{host}:{port}/{db}"

db_engine = create_async_engine("mysql+aiomysql://root:123456@127.0.0.1:3306/demo")
  • 1
  • 2
  • 3
  • 4
  • 5

声明数据库表映射模型

from sqlalchemy import String
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column


class BaseOrmTable(DeclarativeBase):
    """SQLAlchemy Base ORM Model"""

    __abstract__ = True

    id: Mapped[int] = mapped_column(primary_key=True, autoincrement=True, comment="主键ID")


class UserTable(BaseOrmTable):
    """用户表"""

    __tablename__ = "user"
    username: Mapped[str] = mapped_column(String(30), default="", comment="用户昵称")
    password: Mapped[str] = mapped_column(String(30), default="", comment="用户密码")
    phone: Mapped[str] = mapped_column(String(11), default="", comment="手机号")
    email: Mapped[str] = mapped_column(String(30), default="", comment="邮箱")
    avatar: Mapped[str] = mapped_column(String(100), default="", comment="头像")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

简单db操作


from sqlalchemy.ext.asyncio import create_async_engine, async_sessionmaker
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column

# db_uri = "{protocol}://{user}:{password}@{host}:{port}/{db}"

db_engine = create_async_engine("mysql+aiomysql://root:123456@127.0.0.1:3306/hui-demo")

Session = async_sessionmaker(db_engine)

async def create_tables():
    # 根据映射创建库表
    async with db_engine.begin() as conn:
        await conn.run_sync(BaseOrmTable.metadata.create_all)


async def main():
    await create_tables()

    async with Session.begin() as session:
        # 添加用户
        new_user = UserTable(username='hui', email='huidbk@163.com')
        session.add(new_user)
        await session.flush()   # 刷新table 对象属性,获取新增的id
        print(new_user.id)
        print("add user", new_user.__dict__)

        # 获取用户
        user = await session.get(UserTable, new_user.id)
        print("get user", user.__dict__)

        # 更新用户
        user.email = 'hui@163.com'
        await session.merge(user)
        print("updated user", user.__dict__)

        # 删除用户
        await session.delete(user)


if __name__ == '__main__':
    # 运行主函数
    asyncio.run(main())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

常用DB操作封装

SQLAlchemyManager

class SQLAlchemyManager(metaclass=SingletonMetaCls):
    DB_URL_TEMPLATE = "{protocol}://{user}:{password}@{host}:{port}/{db}"

    def __init__(
            self,
            host: str = "localhost",
            port: int = 3306,
            user: str = "",
            password: str = "",
            db_name: str = "",
            pool_size: int = 30,
            pool_pre_ping: bool = True,
            pool_recycle: int = 600,
            log: Union[logging.Logger] = None,
    ):
        self.host = host
        self.port = port
        self.user = user
        self.password = password
        self.db_name = db_name
        self.pool_size = pool_size
        self.pool_pre_ping = pool_pre_ping
        self.pool_recycle = pool_recycle
        self.log = log or logger

        self.db_engine: AsyncEngine = None
        self.async_session_maker: async_sessionmaker = None

    def get_db_url(self, protocol: str = "mysql+aiomysql"):
        db_url = self.DB_URL_TEMPLATE.format(
            protocol=protocol, user=self.user, password=self.password, host=self.host, port=self.port, db=self.db_name
        )
        return db_url
     
    def init_db_engine(self, protocol: str):
        """
        初始化db引擎
        Args:
            protocol: 驱动协议类型

        Returns:
            self.db_engine
        """
        db_url = self.get_db_url(protocol=protocol)
        self.log.info(f"init_db_engine => {db_url}")
        self.db_engine = create_async_engine(
            url=db_url, pool_size=self.pool_size, pool_pre_ping=self.pool_pre_ping, pool_recycle=self.pool_recycle
        )
        self.async_session_maker = async_sessionmaker(bind=self.db_engine, expire_on_commit=False)
        return self.db_engine
        
    def init_mysql_engine(self, protocol: str = "mysql+aiomysql"):
        """
        初始化mysql引擎
        Args:
            protocol: 驱动协议类型

        Returns:
            self.db_engine
        """
        return self.init_db_engine(protocol=protocol) 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

SQLAlchemyManager 主要封装一些数据库账户配置信息、连接池信息。

pool_size(连接池大小): 指定连接池中允许保持的最大连接数。当应用程序需要访问数据库时,连接池会维护一定数量的数据库连接,以便快速地响应请求。通常情况下,pool_size 的值应该根据应用程序的并发访问量和数据库的性能来进行调整。

pool_pre_ping(预检查连接): 指定是否在数据库连接被使用前对连接进行预检查。预检查可以确保连接处于活动状态,并且可以自动重新连接到数据库服务器,以防止连接由于长时间空闲而失效。启用预检查可以提高应用程序对数据库的可靠性和稳定性。

pool_recycle(连接回收时间): 指定数据库连接在被重新使用之前的最大空闲时间。当连接空闲时间超过 pool_recycle 设置的值时,连接将被关闭并重新创建,以防止连接长时间处于空闲状态而导致的连接问题。pool_recycle 的值通常设置为一个较小的时间间隔,以确保连接能够及时地得到回收和重建,从而提高连接的健壮性和性能。

init_db_engine 方法则是初始化数据库引擎,内部根据数据库配置信息

  • 构造异步的数据库引擎 db_engine
  • 维护一个 async_session_maker 数据库会话工厂

BaseORMTable 映射库表封装

from datetime import datetime
from sqlalchemy import func
from sqlalchemy.ext.asyncio import AsyncAttrs
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column


class BaseOrmTable(AsyncAttrs, DeclarativeBase):
    """SQLAlchemy Base ORM Model"""

    __abstract__ = True

    id: Mapped[int] = mapped_column(primary_key=True, comment="主键ID")
    
    def __repr__(self):
        return str(self.to_dict())

    def to_dict(self, alias_dict: dict = None, exclude_none=True) -> dict:
        """
        数据库模型转成字典
        Args:
            alias_dict: 字段别名字典 eg: {"id": "user_id"}, 把id名称替换成 user_id
            exclude_none: 默认排查None值
        Returns: dict
        """
        alias_dict = alias_dict or {}
        if exclude_none:
            return {
                alias_dict.get(c.name, c.name): getattr(self, c.name)
                for c in self.__table__.columns if getattr(self, c.name) is not None
            }
        else:
            return {
                alias_dict.get(c.name, c.name): getattr(self, c.name, None)
                for c in self.__table__.columns
            }


class TimestampColumns(AsyncAttrs, DeclarativeBase):
    """时间戳相关列"""
    __abstract__ = True

    created_at: Mapped[datetime] = mapped_column(default=datetime.now, comment="创建时间")

    updated_at: Mapped[datetime] = mapped_column(default=datetime.now, onupdate=datetime.now, comment="更新时间")

    deleted_at: Mapped[datetime] = mapped_column(nullable=True, comment="删除时间")


class BaseOrmTableWithTS(BaseOrmTable, TimestampColumns):
    __abstract__ = True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

创建一些基础的 ORM 类,以便后续的映射类可以继承并且共享一些公有属性和方法。

  1. BaseOrmTable 类:

    1. 定义了一个基础的 ORM 模型类,继承了 AsyncAttrsDeclarativeBase。这样做使得 BaseOrmTable 类具有了异步属性访问的能力,为异步编程提供便利,特别是在异步环境中访问具有延迟加载或者异步加载特性的属性。
    2. 提供了一个 to_dict 方法,用于将数据库模型转换为字典。它支持通过参数 alias_dict 指定字段别名,并且可以选择是否排除值为 None 的属性。
  2. TimestampColumns 类:

    1. 定义了一个包含时间戳相关列的抽象基类。这些列通常在很多数据库表中都会有,用于记录数据的创建时间、更新时间和删除时间。
    2. 这些列被设置为默认值,比如 created_atupdated_at 默认使用 datetime.now 函数来自动记录当前时间,deleted_at 则允许为空,用于标记数据的删除时间(可用作于逻辑删除)
  3. BaseOrmTableWithTS 类:

    1. 继承了 BaseOrmTableTimestampColumns,实际上是一个组合类,集成了基础的 ORM 功能和时间戳相关的列。
    2. 这个类进一步封装了 BaseOrmTableTimestampColumns,使得后续的映射类只需要继承这个类,就能够拥有基础的 ORM 功能和时间戳相关的列。

通过这种封装,你可以在后续的数据库映射类中更加专注于业务逻辑的实现,而不需要重复编写基础的 ORM 功能和时间戳相关的列,提高了代码的重用性和可维护性。

DBManager 数据库通用操作封装

前置封装说明

from typing import Any, List, Type, TypeVar, Union
from py_tools.connections.db.mysql import BaseOrmTable
from py_tools.meta_cls import SingletonMetaCls
    

# 泛指 BaseOrmTable 所有子类实例对象类型   
T_BaseOrmTable = TypeVar("T_BaseOrmTable", bound=BaseOrmTable)
T_Hints = TypeVar("T_Hints")  # 用于修复被装饰的函数参数提示,让IDE有类型提示


def with_session(method) -> T_Hints:
    """
    兼容事务会话
    Args:
        method: orm 的 crud

    Notes:
        方法中没有带事务连接则,则构造

    Returns:
    """

    @functools.wraps(method)
    async def wrapper(db_manager, *args, **kwargs):
        session = kwargs.get("session") or None
        if session:
            return await method(db_manager, *args, **kwargs)
        else:
            async with db_manager.transaction() as session:
                kwargs["session"] = session
                return await method(db_manager, *args, **kwargs)

    return wrapper
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

这里我提供了一个 with_session 装饰器,用于在需要数据库会话(事务)的数据库操作方法中自动开启事务,由于 sqlaichemy 官方推荐每个数据库操作都手动开启事务会话(自动提交),装饰器的设计没有时则构造,有则共享,这样不但可以减少冗余 async with db_manager.transaction() as session 的代码,也可以兼容多个操作共享同一个 session 有问题时进行事务回滚。

由于给方法加了通用的装饰器导致一些版本的IDE无法识别方法真实的签名,使用时会出现不知道方法的入参是什么,对于开发者来说是极其不方便的。

使用 typing 的 TypeVar 自定义类型来构造一个通用的泛型来当作函数返回的类型,进而修复。

from typing import TypeVar
T_Hints = TypeVar("T_Hints")  # 用于修复被装饰的函数参数提示,让IDE有类型提示


def with_session(method) -> T_Hints:
    ...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

这里PyCharm 2023.2.4 版本升级到 2024.1 就有提示了,IDE修复了,可以不用 T_Hints 了。

一些旧版本构造 sqlaichemy 的库表对象时也会出现不知道类对象属性入参提示,升级到最新版本都解决了。

from contextlib import asynccontextmanager


class DBManager(metaclass=SingletonMetaCls):
    DB_CLIENT: SQLAlchemyManager = None
    orm_table: Type[BaseOrmTable] = None

    @classmethod
    def init_db_client(cls, db_client: SQLAlchemyManager):
        cls.DB_CLIENT = db_client
        return cls.DB_CLIENT

    @classmethod
    @asynccontextmanager
    async def transaction(cls):
        """事务上下文管理器"""
        async with cls.DB_CLIENT.async_session_maker.begin() as session:
            yield session

    @classmethod
    @asynccontextmanager
    async def connection(cls) -> AsyncIterator[AsyncConnection]:
        """数据库引擎连接上下文管理器"""
        async with cls.DB_CLIENT.db_engine.begin() as conn:
            yield conn

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • init_db_client 方法用于初始化数据库客户端(引擎)。
  • transaction 则是简单的通过 contextlib 中 asynccontextmanager 封装一个异步的上下文管理器方便简洁的开启一个数据库会话(事务)进行数据库相关操作。
  • connection 数据库引擎连接上下文管理器。
  • orm_table 是具体继承 DBManager 的子类进行指定的,用于操作具体的库表(orm_table)。
  • DBManager 通过 SingletonMetaCls 元类实现单例模式。具体单例模式可以了解 https://juejin.cn/post/7272006755265380367 这篇文章有详细的介绍。

DB添加操作封装

    
class DBManager(metaclass=SingletonMetaCls):
    DB_CLIENT: SQLAlchemyManager = None
    orm_table: Type[BaseOrmTable] = None

    @with_session
    async def bulk_add(
            self,
            table_objs: List[Union[T_BaseOrmTable, dict]],
            *,
            orm_table: Type[BaseOrmTable] = None,
            flush: bool = False,
            session: AsyncSession = None
    ) -> List[T_BaseOrmTable]:
        """
        批量插入
        Args:
            table_objs: orm映射类实例列表
                eg.[UserTable(username="hui", age=18), ...] or [{"username": "hui", "age": 18}, ...]
            orm_table: orm表映射类
            flush: 刷新对象状态,默认不刷新
            session: 数据库会话对象,如果为 None,则通过装饰器在方法内部开启新的事务

        Returns:
            成功插入的对象列表
        """
        orm_table = orm_table or self.orm_table
        if all(isinstance(table_obj, dict) for table_obj in table_objs):
            # 字典列表转成orm映射类实例列表处理
            table_objs = [orm_table(**table_obj) for table_obj in table_objs]
    
        session.add_all(table_objs)
        if flush:
            await session.flush(table_objs)
    
        return table_objs
    
    @with_session
    async def add(
            self,
            table_obj: [T_BaseOrmTable, dict],
            *,
            orm_table: Type[BaseOrmTable] = None,
            session: AsyncSession = None
     ) -> int:
        """
        插入一条数据
        Args:
            table_obj: orm映射类实例对象, eg. UserTable(username="hui", age=18) or {"username": "hui", "age": 18}
            orm_table: orm表映射类
            session: 数据库会话对象,如果为 None,则通过装饰器在方法内部开启新的事务

        Returns: 新增的id
            table_obj.id
        """
        orm_table = orm_table or self.orm_table
        if isinstance(table_obj, dict):
            table_obj = orm_table(**table_obj)
            
        session.add(table_obj)
        await session.flush(objects=[table_obj])  # 刷新对象状态,获取新增的id
        return table_obj.id
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

这里就是用 session.add 与 add_all 方法封装了数据库添加、批量添加的操作,封装的点主要在于除了 orm_table 实例对象入参还支持字典入参,内部还是转换成库表映射类实例来操作,最后通过 session.flush 方法,单个添加返回新增的主键id,批量添加则是返回实例对象列表。

设计的方法中有一个 * 号是参数的分隔符,它的作用是将其前面的参数声明为位置参数,而将 * 后面的参数声明为关键字参数,* 号后面的参数入参只能使用关键字形式的入参,我在很多的开源库中都看到了这样的设计,可以把一些函数语义连贯、常用必传的参数设置为位置参数,其他的则是关键字参数。这样可以明确参数的作用、提高函数的可读性、防止参数错误等。

具体看下使用案例:

import asyncio

from sqlalchemy import String
from sqlalchemy.ext.asyncio import create_async_engine, async_sessionmaker
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column

from py_tools.connections.db.mysql import BaseOrmTableWithTS, BaseOrmTable, DBManager, SQLAlchemyManager


class UserTable(BaseOrmTableWithTS):
    """用户表"""

    __tablename__ = "user"
    username: Mapped[str] = mapped_column(String(30), default="", comment="用户昵称")
    password: Mapped[str] = mapped_column(String(30), default="", comment="用户密码")
    phone: Mapped[str] = mapped_column(String(11), default="", comment="手机号")
    email: Mapped[str] = mapped_column(String(30), default="", comment="邮箱")
    avatar: Mapped[str] = mapped_column(String(100), default="", comment="头像")


async def create_tables():
    # 根据映射创建库表(异步)
    # async with db_engine.begin() as conn:
    #    await conn.run_sync(BaseOrmTable.metadata.create_all)
    
    async with DBManager.connection() as conn:
        await conn.run_sync(BaseOrmTable.metadata.create_all)


async def init_orm_manager():
    db_client = SQLAlchemyManager(
        host="127.0.0.1",
        port=3306,
        user="root",
        password="123456",
        db_name="hui-demo",
    )
    db_client.init_mysql_engine()
    DBManager().init_db_client(db_client)


async def manager_crud():
    user = {"username": "hui", "email": "huidbk.163.com"}
    user_id = await DBManager().add(table_obj=user, orm_table=UserTable)
    print("user_id", user_id)

    users = [
        {"username": "zack", "email": "zack.163.com"},
        {"username": "wang", "email": "wang.163.com"}
    ]
    add_users = await DBManager().bulk_add(table_objs=users, orm_table=UserTable)
    add_user_ids = [user.id for user in add_users]
    print("add_user_ids", add_user_ids)


async def main():
    await create_tables()

    # await normal_crud()

    await init_orm_manager()

    await manager_crud()


if __name__ == '__main__':
    # 运行主函数
    asyncio.run(main())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68

在程序启动时初始化好DBManager 的 DB_CLIENT 就可以直接使用封装的方法,主要就是 DB_CLIENT 作为类属性,后面DBManager 实例与子类实例对象都可以共享这个数据库引擎。但我这里还是不推荐上面的写法,DBManager 是一些通用的DB操作,而具体一些业务操作还是单独封装一些DB业务Manager类来进行会比较好,更利于扩展维护与复用。


class UserManager(DBManager):
    orm_table = UserTable

    async def get_name_by_email(self, email):
        username = await self.query_one(cols=["username"], conds=[self.orm_table.email == email], flat=True)
        return username


async def manager_crud():

    # demo 2 (推荐)
    user = UserTable(username="hui-test01", email="hui-test01.163.com")
    user_id = await UserManager().add(table_obj=user)
    print("user_id", user_id)

    users = [
        UserTable(username="hui-test02", email="hui-test02.163.com"),
        UserTable(username="hui-test03", email="hui-test03.163.com"),
    ]
    add_users = await UserManager().bulk_add(table_objs=users)
    add_user_ids = [user.id for user in add_users]
    print("add_user_ids", add_user_ids)
    
    username = await UserManager().get_name_by_email(email="huidbk.163.com")
    print("username", username)


>>> out
user_id 4
add_user_ids [5, 6]
username hui
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

这里 UserManager 单独封装的 get_name_by_email 的方法就是业务中常用查询操作通过邮件获取用户名称,这里就是举一个简单的例子,具体DB业务具体封装而不是全部写在逻辑层,这样别人要用的时候就不用重新组织条件参数、上下文,而是简单传递业务参数进行复用获取数据。

UserManager 调用 add、bulk_add 等方法时也不用像 DBManager 指定 orm_table 参数,使用起来更简洁。具体是因为 UserManager 类指定了 类属性 orm_table = UserTable,再封装时有一句 orm_table = orm_table or self.orm_table 意思就是优先选择入参的orm_table,没有则是 self.orm_table (具体实例对象的orm_table)。这样写也体现出 封装、继承的灵活性。

这里也引出了另一个封装方法 query_one 查询单条数据。由于介绍了一些Demo如果把所有的封装方法混合到一起篇幅就太长,故而我准备分成三篇进行分别介绍,这样也更好阅读。

  1. SQLAIchemy 异步DBManager封装-01入门理解
  2. SQLAIchemy 异步DBManager封装-02熟悉掌握
  3. SQLAIchemy 异步DBManager封装-03得心应手

Github源代码

源代码已上传到了Github,里面也有具体的使用Demo,欢迎大家一起体验、贡献。

HuiDBK/py-tools: 打造 Python 开发常用的工具,让Coding变得更简单 (github.com)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/521904
推荐阅读
相关标签
  

闽ICP备14008679号