当前位置:   article > 正文

基于改进YOLO的玉米病害识别系统(部署教程&源码)_本项目研究的目的是设计一种基于深度学习的轻量级玉米病虫害检测方法,该方法能在

本项目研究的目的是设计一种基于深度学习的轻量级玉米病虫害检测方法,该方法能在

1.研究背景与意义

近年来,农业科技的快速发展为农作物的种植和管理带来了许多便利。然而,农作物病害的防治仍然是一个全球性的挑战。玉米作为世界上最重要的粮食作物之一,受到了许多病害的威胁,如玉米灰斑病、玉米穗腐病等。这些病害不仅会导致玉米产量的大幅下降,还会对农民的经济收入和食品安全造成严重影响。

传统的玉米病害识别方法主要依赖于人工观察和经验判断,这种方法存在着主观性强、效率低下和准确性不高的问题。因此,开发一种基于计算机视觉技术的自动化玉米病害识别系统具有重要的研究意义和实际应用价值。

目前,深度学习技术在计算机视觉领域取得了巨大的突破,特别是目标检测领域。YOLO(You Only Look Once)是一种基于深度学习的实时目标检测算法,具有快速、准确和端到端的特点。然而,由于YOLO算法在小目标检测和密集目标检测方面的性能相对较差,对于玉米病害这种小尺寸和高密度的目标,传统的YOLO算法可能无法满足需求。

因此,本研究旨在改进YOLO算法,提高其在玉米病害识别中的性能。具体而言,我们将探索以下几个方面的改进:

  1. 数据集构建:我们将收集大量的玉米病害图像,并进行标注和分类,构建一个高质量的玉米病害数据集。这将为改进YOLO算法提供有力的数据支持。

  2. 网络结构优化:我们将对YOLO算法的网络结构进行优化,以提高其对小尺寸和高密度目标的检测能力。优化方向包括增加网络的深度和宽度,引入RepVGG等。

  3. 数据增强技术:我们将探索各种数据增强技术,如旋转、缩放、平移等,以增加数据的多样性和数量,提高模型的泛化能力。

  4. 模型训练与优化:我们将使用大规模的玉米病害数据集对改进后的YOLO算法进行训练,并通过调整超参数和优化损失函数等手段,进一步提高模型的性能。

通过改进YOLO算法,我们期望能够开发出一种高效准确的玉米病害识别系统,为农民提供及时的病害监测和防治建议,帮助他们减少经济损失,提高农作物的产量和质量。此外,该研究还将为其他农作物的病害识别和农业智能化发展提供借鉴和参考。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.视频演示

基于改进YOLO的玉米病害识别系统(部署教程&源码)

4.网络结构改进

文章还未正式发表出来(已经发在cvpr2021了),暂时是挂在了arxiv上。
感觉很有意思,读这篇文章之前看了一眼作者在ICCV2019上的ACNet (Acnet: Strengthening the kernel skeletonsfor powerful cnn via asymmetric convolution blocks)
感觉两篇文章的核心应该是异曲同工之妙。
从我读文章的感觉,核心点简单来看就叫训练和推理(测试)不是一个网络
该文章的作者在知乎上也写了自己的笔记: zhuanlan.zhihu.com/p/3…文章的细节内容大家可以看作者笔记和原文,这里就记录一点自己的感受。
vgg虽然快,但是效果并不好,他甚至连个分支结构都没有。于是作者就说,既然分支结构有利于训练,那我训练就用分支结构呗。既然vgg式快,那我推理(测试)的时候就用vgg呗。那么问题来了,训练的网络和推理的网络不一样?那怎么搞?
作者说等价转换,这就是文章与其他的文章的不同了。
对于一般的方法来讲是这样的:
在这里插入图片描述

5.在YOLOv5中加入RepVGG模块

参考该博客的改进方法,我们提出了RepVGG,一种VGG风格的架构,其性能优于许多复杂模型(图1)。
在这里插入图片描述

RepVGG具有以下优点。
·该模型具有类似VGG的普通(又名前馈)拓扑没有任何分支,这意味着每一层都将其唯一前一层的输出作为输入,并将输出馈送到其唯一的后一层。
·模型的主体仅使用3×3卷积和ReLU。
·具体架构(包括特定深度和层宽)实例化时没有自动搜索[44]、手动细化[28]、
复合缩放「[35],也没有其他繁重的设计。对于普通模型来说,要达到与多分支体系结构相当的性能水平是具有挑战性的。一种解释是,多分支拓扑,例如ResNet,使模型成为许多较浅模型的隐式集合[36],因此训练多分支模型避免了梯度消失问题。
由于多分支架构的好处都是用于训练,而缺点是推理所不希望的,因此我们建议通过结构重新参数化来解耦训练时多分支和推理时平原架构,这意味着通过转换其参数将架构从一个转换为另一个。具体来说,网络结构与一组参数耦合,例如,conv层由4阶核张量表示。如果某个结构的参数可以转换成另一组耦合的参数,我们可以等价地用后者替换前者,从而改变整个网络架构。
具体来说,我们使用恒等式和1x1分支构建训练时RepVGG,这受到ResNet 的启发,但以不同的方式,可以通过结构重新参数化来删除分支(图2、4)。训练后,我们用简单的代数进行变换,因为恒等分支可以看作是退化的1x1 conv,后者可以进一步视为退化的3×g conv,这样我们就可以构造一个带有参数核的单个3×3原始3×3内核、恒等式和1x1分支和批量归一化 (BN)[19]层。因此,转换后的模型具有3x3个卷积层的堆栈,该层被保存以供测试和部署。
值得注意的是,推理时RepVGG的主体只有一种类型的运算符: 3x3 conv,后跟ReLU,这使得RepVGG在GPU等通用计算设备上速度很快。更好的是,RepVGG允许专用硬件实现更高的速度,因为考虑到芯片尺寸
和功耗,我们需要的运算符类型越少,我们可以集成到芯片上的计算单元就越多,因此,n专月于RenVGG 的推理芯片可以具有大量3×3-ReLU单元和更少的内存单元(因为普通拓扑是内存经济型的,如图所示。
在这里插入图片描述
普通卷积网有很多优点,但有一个致命的弱点:性能差。例如,使用像BN[19g]这样的现代组件,VGG-16可
以在ImageNet上达到超过72%的top-1精度,这似于已过的" y。f),并使用残差块来学习f。当x和f启发,它显式构造了一个快捷方式分支,将信息流建模为y =x +f (x),并使用残差块来学习f。当x和f
(x)的维度不匹配时,它变为y =g (x)+f(x),其中 g ( x)是由1×1转换实现的卷积快捷方式。ResNets成功的一个解释是,这种多分支架构使该模型成为许多较浅模型的隐式集合[36]。具体来说,对于n个块,该模型可以解释为2的融合"模型,因为每个块将流分支为两条路径。
由于多分支拓扑在推理方面存在缺点,但分支似乎有利于训练[36],因此我们使用多
的仅训练时间集合。为了使大多数成员更浅攻更间单,找们使用尖19KESNe 们只是堆叠几个这样的块来构和1×1个分支,以便构建块的训练时间信息流为y=x+g (x)+ f (x)。我们只是堆叠几个这样的块来构
建训练时间模型。从与[6]相同的角度来看,模型成为3的集合"具有n个此类块的成员。

配置文件如下:

# YOLOv5 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/564372
推荐阅读
相关标签