赞
踩
首先推荐一下我们的知识星球,以AI与安全结合作为主题,包括AI在安全上的应用和AI本身的安全;
加入星球你将获得:
【Ai4sec】:以数据驱动增强安全水位,涵盖内容包括:恶意软件分析,软件安全,AI安全,数据安全,系统安全,流量分析,防爬,验证码等安全方向。星主目前在某大厂从事安全研究,论文以及专利若干,Csdn博客专家,访问量70w+。分享者均为大厂研究员或博士,如阿里云,蚂蚁,腾讯等;
选择加入即可获得:
1、前沿安全研究资讯
2、相关安全领域的研究入门和进阶,如malware,fuzz,program analysis,antibot等
3、大厂岗位内推,包括阿里云,蚂蚁,腾讯等
4、求职考研考博简历润色及辅导是允许读者一对一咨询求职、考研考博相关问题,并帮助读者修改简历和告知相关经验。
5、相关论文方向指导
现在正在低成本推广,秒杀一波福利,数量有限,先到先得,欢迎新老朋友们加入一起讨论:
对于没有抢到的朋友们,我们也有相应的较大额度的优惠券赠送:
标题: Quantum cryptographic protocols with dual messaging system via 2D alternate quantum walks and genuine single particle entangled states
标题: Growth in products of matrices: fastest, average, and generic
标题: Unbundle-Rewrite-Rebundle: Runtime Detection and Rewriting of Privacy-Harming Code in JavaScript Bundles
标题: Byzantine-Secure Relying Party for Resilient RPKI
标题: JNI Global References Are Still Vulnerable: Attacks and Defenses
标题: PackVFL: Efficient HE Packing for Vertical Federated Learning
标题: Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable
标题: Modeling Linear and Non-linear Layers: An MILP Approach Towards Finding Differential and Impossible Differential Propagations
标题: On the Potential of RIS in the Context of PLA in Wireless Communication Systems
标题: Detection of ransomware attacks using federated learning based on the CNN model
标题: Trust Driven On-Demand Scheme for Client Deployment in Federated Learning
标题: Inferring State Machine from the Protocol Implementation via Large Language Model
标题: Certified Adversarial Robustness of Machine Learning-based Malware Detectors via (De)Randomized Smoothing
标题: Metric geometry of the privacy-utility tradeoff
标题: FPGA Digital Dice using Pseudo Random Number Generator
标题: The Reversing Machine: Reconstructing Memory Assumptions
标题: Differentially Private Release of Israel’s National Registry of Live Births
以下是每篇文章的标题、作者、摘要总结、发表时间和链接的中文信息,涵盖了从网络安全、联邦学习、软件漏洞检测到自动语音识别等多个领域的最新研究进展。
标题: Error Correction Capabilities of Non-Linear Cryptographic Hash Functions
标题: Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
标题: Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders
标题: Unconditionally Safe Light Client
标题: An Exploratory Case Study on Data Breach Journalism
标题: Applying Transparent Shaping for Zero Trust Architecture Implementation in AWS: A Case Study
标题: IDPFilter: Mitigating Interdependent Privacy Issues in Third-Party Apps
标题: Position Paper: Beyond Robustness Against Single Attack Types
标题: Decentralization of Ethereum’s Builder Market
标题: A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks
标题: Privacy-Enhanced Database Synthesis for Benchmark Publishing
标题: Measuring the Exploitation of Weaknesses in the Wild
标题: Boosting Jailbreak Attack with Momentum
标题: Improving Membership Inference in ASR Model Auditing with Perturbed Loss Features
标题: DLAP: A Deep Learning Augmented Large Language Model Prompting Framework for Software Vulnerability Detection
标题: Boosting Communication Efficiency of Federated Learning’s Secure Aggregation
标题: A Survey of the Overlooked Dangers of Template Engines
标题: Mining REST APIs for Potential Mass Assignment Vulnerabilities
标题: LLM Security Guard for Code
标题: KDPrint: Passive Authentication using Keystroke Dynamics-to-Image Encoding via Standardization
标题: Poisoning Attacks on Federated Learning for Autonomous Driving
标题: Development of Cybersecurity Simulator-Based Platform for the Protection of Critical Infrastructures
标题: The Privacy Power of Correlated Noise in Decentralized Learning
标题: Towards Trust Proof for Secure Confidential Virtual Machines
标题: Recovering Labels from Local Updates in Federated Learning
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。