当前位置:   article > 正文

YOLOv10改进 | 图像去雾 | MB-TaylorFormer改善YOLOv10高分辨率和图像去雾检测(ICCV,全网独家首发)

YOLOv10改进 | 图像去雾 | MB-TaylorFormer改善YOLOv10高分辨率和图像去雾检测(ICCV,全网独家首发)

 一、本文介绍

本文给大家带来的改进机制是图像去雾MB-TaylorFormer,其发布于2023年的国际计算机视觉会议(ICCV)上,可以算是一遍比较权威的图像去雾网络, MB-TaylorFormer是一种为图像去雾设计的多分支高效Transformer网络,它通过应用泰勒公式展开的方式来近似softmax-attention机制,实现了线性的计算复杂性,原本的网络计算量和参数量比较高,我对其进行了一定的跳转参数量和计算量都大幅度的降低,其为高分辨率图像处理也提供了一种新的解决方案。

 欢迎大家订阅我的专栏一起学习YOLO! 

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、原理介绍 

2.1 MB-TaylorFormer基本原理

2.2 泰勒公式展开的自注意力机制

2.3 多尺度注意力精化模块

2.4 多分支架构与多尺度贴片嵌入

三、核心代码

四、代码的使用方式

 4.1 修改一

4.2 修改二 

4.3 修改三 

关闭混合精度验证(可能需要)!

打印计算量的问题!

五、yaml文件和运行记录

5.1 yaml文件

5.2 训练代码 

5.3 训练过程截图 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/829217
推荐阅读
相关标签
  

闽ICP备14008679号