当前位置:   article > 正文

机器学习——深度学习 Deep Learning_深度学习(deep learning)作为机器学习

深度学习(deep learning)作为机器学习
               

Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。


Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,


1. 有监督学习和无监督学习


给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification。

regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。


classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

,其中fi(X)=P(Y=i | X);


无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

density estimation就是密度估计,估计该数据在任意位置的分布密度

clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。

PCA和很多deep learning算法都属于无监督学习。



2. 深度学习Deep Learning介绍

   Depth 概念:depth: the length of the longest path from an input to an output.

   Deep Architecture 的三个特点:深度不足会出现问题;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描述而成的feature构成,就是上篇中提到的feature hierarchy问题,而且该hierarchy是一个稀疏矩阵

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/829542
推荐阅读
相关标签
  

闽ICP备14008679号