赞
踩
tcpdump命令是基于unix系统的命令行的数据报嗅探工具,可以抓取流动在网卡上的数据包,熟悉 tcpdump 的使用能够帮助你分析调试网络数据。
linux抓包是通过注册一种虚拟的底层网络协议来完成对网络报文(准确的是网络设备)消息的处理权。当网卡接收到一个网络报文之后,它会遍历系统中所有已经注册的网络协议,如以太网协议、x25协议处理模块来尝试进行报文的解析处理。当抓包模块把自己伪装成一个网络协议的时候,系统在收到报文的时候就会给这个伪协议一次机会,让它对网卡收到的保温进行一次处理,此时该模块就会趁机对报文进行窥探,也就是啊这个报文完完整整的复制一份,假装是自己接收的报文,汇报给抓包模块。
tcpdump --help 帮助命令
(1)、类型的关键字
host:指明一台主机。如:host 10.1.110.110net:指明一个网络地址,如:net 10.1.0.0port:指明端口号:如:port 8090
(2)、确定方向的关键字
src:ip包的源地址,如:src 10.1.110.110dst:ip包的目标地址。如:dst 10.1.110.110
(3)、协议的关键字(缺省是所有协议的信息包)
fddi、ip、arp、rarp、tcp、udp。
(4)、其它关键字
gateway、broadcast、less、greater。
(5)、常用表达式
! or not&& or and|| or or
(6)、参数详解
基础用法
tcpdump -i eth0 -nn -s0 -v port 80
额外再介绍几个常用参数:
tcpdump -n -e -c 5 not ip6
显示 ASCII 字符串
-A 表示使用 ASCII 字符串打印报文的全部数据,这样可以使读取更加简单,方便使用 grep 等工具解析输出内容。-X 表示同时使用十六进制和 ASCII 字符串打印报文的全部数据。这两个参数不能一起使用。例如:
tcpdump -A -s0 port 80
抓取特定协议的数据
后面可以跟上协议名称来过滤特定协议的流量,以 UDP 为例,可以加上参数 udp 或 protocol 17,这两个命令意思相同。
$ tcpdump -i eth0 udp$ tcpdump -i eth0 proto 17
同理,tcp 与 protocol 6 意思相同。
抓取特定主机的数据
使用过滤器 host 可以抓取特定目的地和源 IP 地址的流量。
$ tcpdump -i eth0 host 10.10.1.1
也可以使用 src 或 dst 只抓取源或目的地:
$ tcpdump -i eth0 dst 10.10.1.20
将抓取的数据写入文件
使用 tcpdump 截取数据报文的时候,默认会打印到屏幕的默认输出,你会看到按照顺序和格式,很多的数据一行行快速闪过,根本来不及看清楚所有的内容。不过,tcpdump 提供了把截取的数据保存到文件的功能,以便后面使用其他图形工具(比如 wireshark,Snort)来分析。
-w 选项用来把数据报文输出到文件:
$ tcpdump -i eth0 -s0 -w test.pcap
行缓冲模式
如果想实时将抓取到的数据通过管道传递给其他工具来处理,需要使用 -l 选项来开启行缓冲模式(或使用 -c 选项来开启数据包缓冲模式)。使用 -l 选项可以将输出通过立即发送给其他命令,其他命令会立即响应。
$ tcpdump -i eth0 -s0 -l port 80 | grep 'Server:'
组合过滤器
过滤的真正强大之处在于你可以随意组合它们,而连接它们的逻辑就是常用的 与/AND/&& 、 或/OR/|| 和 非/not/!。
and or &&or or ||not or !
关于 tcpdump 的过滤器,由于机器上的网络报文数量异常的多,很多时候我们只关系和具体问题有关的数据报(比如访问某个网站的数据,或者 icmp 超时的报文等等),而这些数据只占到很小的一部分。把所有的数据截取下来,从里面找到想要的信息无疑是一件很费时费力的工作。而 tcpdump 提供了灵活的语法可以精确地截取关心的数据报,简化分析的工作量。这些选择数据包的语句就是过滤器(filter)!
Host 过滤器
Host 过滤器用来过滤某个主机的数据报文。例如:
$ tcpdump host 1.2.3.4
该命令会抓取所有发往主机 1.2.3.4 或者从主机 1.2.3.4 发出的流量。如果想只抓取从该主机发出的流量,可以使用下面的命令:
$ tcpdump src host 1.2.3.4
Network 过滤器
Network 过滤器用来过滤某个网段的数据,使用的是 CIDR 模式。可以使用四元组(x.x.x.x)、三元组(x.x.x)、二元组(x.x)和一元组(x)。四元组就是指定某个主机,三元组表示子网掩码为 255.255.255.0,二元组表示子网掩码为 255.255.0.0,一元组表示子网掩码为 255.0.0.0。例如,
抓取所有发往网段 192.168.1.x 或从网段 192.168.1.x 发出的流量:
$ tcpdump net 192.168.1
抓取所有发往网段 10.x.x.x 或从网段 10.x.x.x 发出的流量:
$ tcpdump net 10
和 Host 过滤器一样,这里也可以指定源和目的:
$ tcpdump src net 10
也可以使用 CIDR 格式:
$ tcpdump src net 172.16.0.0/12
Proto 过滤器
Proto 过滤器用来过滤某个协议的数据,关键字为 proto,可省略。proto 后面可以跟上协议号或协议名称,支持 icmp, igmp, igrp, pim, ah, esp, carp, vrrp, udp和 tcp。因为通常的协议名称是保留字段,所以在于 proto 指令一起使用时,必须根据 shell 类型使用一个或两个反斜杠(/)来转义。Linux 中的 shell 需要使用两个反斜杠来转义,MacOS 只需要一个。
例如,抓取 icmp 协议的报文:
$ tcpdump -n proto \\icmp# 或者$ tcpdump -n icmp
Port 过滤器
Port 过滤器用来过滤通过某个端口的数据报文,关键字为 port。例如:
$ tcpdump port 389
1、获取10.1.85.21和10.1.85.19之间的通信,使用命令注意转义符号。
[root@centos daocoder]# tcpdump host 10.1.85.21 and
2、获取从10.1.85.21发来的包。
[root@centos daocoder]# tcpdump src host 10.1.85.21 -c 10 -i ens5f1
3、监听tcp(udp)端口。
[root@centos daocoder]# tcpdump tcp port 22 -c 10
4、获取主机10.1.85.21和除10.1.85.19之外所有主机的通信。
[root@centos daocoder]# tcpdump ip host 10.1.85.21 and ! 10.1.85.19 -c 10 -i any
5、获取从10.1.85.19且端口主机到10.1.85.21主机的通信。
[root@centos daocoder]# tcpdump src host 10.1.85.19 and src port 48565 and dst host 10.1.85.21 and dst port 5090 -i any -c 10 -nn
截取数据只是第一步,第二步就是理解这些数据,下面就解释一下 tcpdump 命令输出各部分的意义。
21:27:06.995846 IP (tos 0x0, ttl 64, id 45646, offset 0, flags [DF], proto TCP (6), length 64) 192.168.1.106.56166 > 124.192.132.54.80: Flags [S], cksum 0xa730 (correct), seq 992042666, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 663433143 ecr 0,sackOK,eol], length 021:27:07.030487 IP (tos 0x0, ttl 51, id 0, offset 0, flags [DF], proto TCP (6), length 44) 124.192.132.54.80 > 192.168.1.106.56166: Flags [S.], cksum 0xedc0 (correct), seq 2147006684, ack 992042667, win 14600, options [mss 1440], length 021:27:07.030527 IP (tos 0x0, ttl 64, id 59119, offset 0, flags [DF], proto TCP (6), length 40) 192.168.1.106.56166 > 124.192.132.54.80: Flags [.], cksum 0x3e72 (correct), ack 2147006685, win 65535, length 0
最基本也是最重要的信息就是数据报的源地址/端口和目的地址/端口,上面的例子第一条数据报中,源地址 ip 是 192.168.1.106,源端口是 56166,目的地址是 124.192.132.54,目的端口是 80。 > 符号代表数据的方向。
此外,上面的三条数据还是 tcp 协议的三次握手过程,第一条就是 SYN 报文,这个可以通过 Flags [S] 看出。下面是常见的 TCP 报文的 Flags:
而第二条数据的 [S.] 表示 SYN-ACK,就是 SYN 报文的应答报文。
下面给出一些具体的例子,每个例子都可以使用多种方法来获得相同的输出,你使用的方法取决于所需的输出和网络上的流量。我们在排障时,通常只想获取自己想要的内容,可以通过过滤器和 ASCII 输出并结合管道与 grep、cut、awk 等工具来实现此目的。
在抓取 HTTP 请求和响应数据包时,可以通过删除标志 SYN/ACK/FIN 来过滤噪声,但还有更简单的方法,那就是通过管道传递给 grep。在达到目的的同时,我们要选择最简单最高效的方法。下面来看例子。
提取 HTTP 用户代理
从 HTTP 请求头中提取 HTTP 用户代理:
$ tcpdump -nn -A -s1500 -l | grep "User-Agent:"
通过 egrep 可以同时提取用户代理和主机名(或其他头文件):
$ tcpdump -nn -A -s1500 -l | egrep -i 'User-Agent:|Host:'
只抓取 HTTP GET 和 POST 流量
抓取 HTTP GET 流量:
$ tcpdump -s 0 -A -vv 'tcp[((tcp[12:1] & 0xf0) >> 2):4] = 0x47455420'
也可以抓取 HTTP POST 请求流量:
$ tcpdump -s 0 -A -vv 'tcp[((tcp[12:1] & 0xf0) >> 2):4] = 0x504f5354'
注意:该方法不能保证抓取到 HTTP POST 有效数据流量,因为一个 POST 请求会被分割为多个 TCP 数据包。
上述两个表达式中的十六进制将会与 GET 和 POST 请求的 ASCII 字符串匹配。例如,tcp[((tcp[12:1] & 0xf0) >> 2):4] 首先会确定我们感兴趣的字节的位置(在 TCP header 之后),然后选择我们希望匹配的 4 个字节。
提取 HTTP 请求的 URL
提取 HTTP 请求的主机名和路径:
$ tcpdump -s 0 -v -n -l | egrep -i "POST /|GET /|Host:"
tcpdump: listening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes POST /wp-login.php HTTP/1.1 Host: dev.example.com GET /wp-login.php HTTP/1.1 Host: dev.example.com GET /favicon.ico HTTP/1.1 Host: dev.example.com GET / HTTP/1.1 Host: dev.example.com
提取 HTTP POST 请求中的密码
从 HTTP POST 请求中提取密码和主机名:
$ tcpdump -s 0 -A -n -l | egrep -i "POST /|pwd=|passwd=|password=|Host:"
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes11:25:54.799014 IP 10.10.1.30.39224 > 10.10.1.125.80: Flags [P.], seq 1458768667:1458770008, ack 2440130792, win 704, options [nop,nop,TS val 461552632 ecr 208900561], length 1341: HTTP: POST /wp-login.php HTTP/1.1.....s..POST /wp-login.php HTTP/1.1Host: dev.example.com.....s..log=admin&pwd=notmypassword&wp-submit=Log+In&redirect_to=http%3A%2F%2Fdev.example.com%2Fwp-admin%2F&testcookie=1
提取 Cookies
提取 Set-Cookie(服务端的 Cookie)和 Cookie(客户端的 Cookie):
$ tcpdump -nn -A -s0 -l | egrep -i 'Set-Cookie|Host:|Cookie:'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on wlp58s0, link-type EN10MB (Ethernet), capture size 262144 bytesHost: dev.example.comCookie: wordpress_86be02xxxxxxxxxxxxxxxxxxxc43=admin%7C152xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxfb3e15c744fdd6; _ga=GA1.2.21343434343421934; _gid=GA1.2.927343434349426; wordpress_test_cookie=WP+Cookie+check; wordpress_logged_in_86be654654645645645654645653fc43=admin%7C15275102testtesttesttestab7a61e; wp-settings-time-1=1527337439
查看网络上的所有 ICMP 数据包:
$ tcpdump -n icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes11:34:21.590380 IP 10.10.1.217 > 10.10.1.30: ICMP echo request, id 27948, seq 1, length 6411:34:21.590434 IP 10.10.1.30 > 10.10.1.217: ICMP echo reply, id 27948, seq 1, length 6411:34:27.680307 IP 10.10.1.159 > 10.10.1.1: ICMP 10.10.1.189 udp port 59619 unreachable, length 115
抓取非 ECHO/REPLY 类型的 ICMP 数据包
通过排除 echo 和 reply 类型的数据包使抓取到的数据包不包括标准的 ping 包:
$ tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes11:37:04.041037 IP 10.10.1.189 > 10.10.1.20: ICMP 10.10.1.189 udp port 36078 unreachable, length 156
可以提取电子邮件的正文和其他数据。例如,只提取电子邮件的收件人:
$ tcpdump -nn -l port 25 | grep -i 'MAIL FROM\|RCPT TO'
$ tcpdump dst port 123
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes21:02:19.112502 IP test33.ntp > 199.30.140.74.ntp: NTPv4, Client, length 4821:02:19.113888 IP 216.239.35.0.ntp > test33.ntp: NTPv4, Server, length 4821:02:20.150347 IP test33.ntp > 216.239.35.0.ntp: NTPv4, Client, length 4821:02:20.150991 IP 216.239.35.0.ntp > test33.ntp: NTPv4, Server, length 48
抓取 SNMP 服务的查询和响应
通过 SNMP 服务,渗透测试人员可以获取大量的设备和系统信息。在这些信息中,系统信息最为关键,如操作系统版本、内核版本等。使用 SNMP 协议快速扫描程序 onesixtyone,可以看到目标系统的信息:
$ onesixtyone 10.10.1.10 publicScanning 1 hosts, 1 communities10.10.1.10 [public] Linux test33 4.15.0-20-generic #21-Ubuntu SMP Tue Apr 24 06:16:15 UTC 2018 x86_64
可以通过 tcpdump 抓取 GetRequest 和 GetResponse:
$ tcpdump -n -s0 port 161 and udp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on wlp58s0, link-type EN10MB (Ethernet), capture size 262144 bytes23:39:13.725522 IP 10.10.1.159.36826 > 10.10.1.20.161: GetRequest(28) .1.3.6.1.2.1.1.1.023:39:13.728789 IP 10.10.1.20.161 > 10.10.1.159.36826: GetResponse(109) .1.3.6.1.2.1.1.1.0="Linux testmachine 4.15.0-20-generic #21-Ubuntu SMP Tue Apr 24 06:16:15 UTC 2018 x86_64"
切割 pcap 文件
当抓取大量数据并写入文件时,可以自动切割为多个大小相同的文件。例如,下面的命令表示每 3600 秒创建一个新文件 capture-(hour).pcap,每个文件大小不超过 200*1000000 字节:
$ tcpdump -w /tmp/capture-%H.pcap -G 3600 -C 200
这些文件的命名为 capture-{1-24}.pcap,24 小时之后,之前的文件就会被覆盖。
可以通过过滤器 ip6 来抓取 IPv6 流量,同时可以指定协议如 TCP:
$ tcpdump -nn ip6 proto 6
从之前保存的文件中读取 IPv6 UDP 数据报文:
$ tcpdump -nr ipv6-test.pcap ip6 proto 17
检测端口扫描
在下面的例子中,你会发现抓取到的报文的源和目的一直不变,且带有标志位 [S] 和 [R],它们与一系列看似随机的目标端口进行匹配。当发送 SYN 之后,如果目标主机的端口没有打开,就会返回一个 RESET。这是 Nmap 等端口扫描工具的标准做法。
$ tcpdump -nn21:46:19.693601 IP 10.10.1.10.60460 > 10.10.1.199.5432: Flags [S], seq 116466344, win 29200, options [mss 1460,sackOK,TS val 3547090332 ecr 0,nop,wscale 7], length 021:46:19.693626 IP 10.10.1.10.35470 > 10.10.1.199.513: Flags [S], seq 3400074709, win 29200, options [mss 1460,sackOK,TS val 3547090332 ecr 0,nop,wscale 7], length 021:46:19.693762 IP 10.10.1.10.44244 > 10.10.1.199.389: Flags [S], seq 2214070267, win 29200, options [mss 1460,sackOK,TS val 3547090333 ecr 0,nop,wscale 7], length 021:46:19.693772 IP 10.10.1.199.389 > 10.10.1.10.44244: Flags [R.], seq 0, ack 2214070268, win 0, length 021:46:19.693783 IP 10.10.1.10.35172 > 10.10.1.199.1433: Flags [S], seq 2358257571, win 29200, options [mss 1460,sackOK,TS val 3547090333 ecr 0,nop,wscale 7], length 021:46:19.693826 IP 10.10.1.10.33022 > 10.10.1.199.49153: Flags [S], seq 2406028551, win 29200, options [mss 1460,sackOK,TS val 3547090333 ecr 0,nop,wscale 7], length 021:46:19.695567 IP 10.10.1.10.55130 > 10.10.1.199.49154: Flags [S], seq 3230403372, win 29200, options [mss 1460,sackOK,TS val 3547090334 ecr 0,nop,wscale 7], length 021:46:19.695590 IP 10.10.1.199.49154 > 10.10.1.10.55130: Flags [R.], seq 0, ack 3230403373, win 0, length 021:46:19.695608 IP 10.10.1.10.33460 > 10.10.1.199.49152: Flags [S], seq 3289070068, win 29200, options [mss 1460,sackOK,TS val 3547090335 ecr 0,nop,wscale 7], length 021:46:19.695622 IP 10.10.1.199.49152 > 10.10.1.10.33460: Flags [R.], seq 0, ack 3289070069, win 0, length 021:46:19.695637 IP 10.10.1.10.34940 > 10.10.1.199.1029: Flags [S], seq 140319147, win 29200, options [mss 1460,sackOK,TS val 3547090335 ecr 0,nop,wscale 7], length 021:46:19.695650 IP 10.10.1.199.1029 > 10.10.1.10.34940: Flags [R.], seq 0, ack 140319148, win 0, length 021:46:19.695664 IP 10.10.1.10.45648 > 10.10.1.199.5060: Flags [S], seq 2203629201, win 29200, options [mss 1460,sackOK,TS val 3547090335 ecr 0,nop,wscale 7], length 021:46:19.695775 IP 10.10.1.10.49028 > 10.10.1.199.2000: Flags [S], seq 635990431, win 29200, options [mss 1460,sackOK,TS val 3547090335 ecr 0,nop,wscale 7], length 021:46:19.695790 IP 10.10.1.199.2000 > 10.10.1.10.49028: Flags [R.], seq 0, ack 635990432, win 0, length 0
过滤 Nmap NSE 脚本测试结果
本例中 Nmap NSE 测试脚本 http-enum.nse 用来检测 HTTP 服务的合法 URL。
在执行脚本测试的主机上:
$ nmap -p 80 --script=http-enum.nse targetip
在目标主机上:
$ tcpdump -nn port 80 | grep "GET /"GET /w3perl/ HTTP/1.1GET /w-agora/ HTTP/1.1GET /way-board/ HTTP/1.1GET /web800fo/ HTTP/1.1GET /webaccess/ HTTP/1.1GET /webadmin/ HTTP/1.1GET /webAdmin/ HTTP/1.1
抓取 DNS 请求和响应
向 Google 公共 DNS 发起的出站 DNS 请求和 A 记录响应可以通过 tcpdump 抓取到:
$ tcpdump -i wlp58s0 -s0 port 53
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on wlp58s0, link-type EN10MB (Ethernet), capture size 262144 bytes14:19:06.879799 IP test.53852 > google-public-dns-a.google.com.domain: 26977+ [1au] A? play.google.com. (44)14:19:07.022618 IP google-public-dns-a.google.com.domain > test.53852: 26977 1/0/1 A 216.58.203.110 (60)
抓取 80 端口的 HTTP 有效数据包,排除 TCP 连接建立过程的数据包(SYN / FIN / ACK):
$ tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)>2)) != 0)'
将输出内容重定向到 Wireshark
通常 Wireshark(或 tshark)比 tcpdump 更容易分析应用层协议。一般的做法是在远程服务器上先使用 tcpdump 抓取数据并写入文件,然后再将文件拷贝到本地工作站上用 Wireshark 分析。
还有一种更高效的方法,可以通过 ssh 连接将抓取到的数据实时发送给 Wireshark 进行分析。以 MacOS 系统为例,可以通过 brew cask install wireshark 来安装,然后通过下面的命令来分析:
$ ssh root@remotesystem 'tcpdump -s0 -c 1000 -nn -w - not port 22' | /Applications/Wireshark.app/Contents/MacOS/Wireshark -k -i -
例如,如果想分析 DNS 协议,可以使用下面的命令:
$ ssh root@remotesystem 'tcpdump -s0 -c 1000 -nn -w - port 53' | /Applications/Wireshark.app/Contents/MacOS/Wireshark -k -i -
-c 选项用来限制抓取数据的大小。如果不限制大小,就只能通过 ctrl-c 来停止抓取,这样一来不仅关闭了 tcpdump,也关闭了 wireshark。
找出发包最多的 IP
找出一段时间内发包最多的 IP,或者从一堆报文中找出发包最多的 IP,可以使用下面的命令:
$ tcpdump -nnn -t -c 200 | cut -f 1,2,3,4 -d '.' | sort | uniq -c | sort -nr | head -n 20
tcpdump: verbose output suppressed, use -v or -vv for full protocol decodelistening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes200 packets captured261 packets received by filter0 packets dropped by kernel 108 IP 10.10.211.181 91 IP 10.10.1.30 1 IP 10.10.1.50
本例将重点放在标准纯文本协议上,过滤出于用户名和密码相关的报文:
$ tcpdump port http or port ftp or port smtp or port imap or port pop3 or port telnet -l -A | egrep -i -B5 'pass=|pwd=|log=|login=|user=|username=|pw=|passw=|passwd=|password=|pass:|user:|username:|password:|login:|pass |user '
抓取 DHCP 服务的请求和响应报文,67 为 DHCP 端口,68 为客户机端口。
$ tcpdump -v -n port 67 or 68
tcpdump: listening on enp7s0, link-type EN10MB (Ethernet), capture size 262144 bytes14:37:50.059662 IP (tos 0x10, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 328) 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from 00:0c:xx:xx:xx:d5, length 300, xid 0xc9779c2a, Flags [none] Client-Ethernet-Address 00:0c:xx:xx:xx:d5 Vendor-rfc1048 Extensions Magic Cookie 0x63825363 DHCP-Message Option 53, length 1: Request Requested-IP Option 50, length 4: 10.10.1.163 Hostname Option 12, length 14: "test-ubuntu" Parameter-Request Option 55, length 16: Subnet-Mask, BR, Time-Zone, Default-Gateway Domain-Name, Domain-Name-Server, Option 119, Hostname Netbios-Name-Server, Netbios-Scope, MTU, Classless-Static-Route NTP, Classless-Static-Route-Microsoft, Static-Route, Option 25214:37:50.059667 IP (tos 0x10, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 328) 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from 00:0c:xx:xx:xx:d5, length 300, xid 0xc9779c2a, Flags [none] Client-Ethernet-Address 00:0c:xx:xx:xx:d5 Vendor-rfc1048 Extensions Magic Cookie 0x63825363 DHCP-Message Option 53, length 1: Request Requested-IP Option 50, length 4: 10.10.1.163 Hostname Option 12, length 14: "test-ubuntu" Parameter-Request Option 55, length 16: Subnet-Mask, BR, Time-Zone, Default-Gateway Domain-Name, Domain-Name-Server, Option 119, Hostname Netbios-Name-Server, Netbios-Scope, MTU, Classless-Static-Route NTP, Classless-Static-Route-Microsoft, Static-Route, Option 25214:37:50.060780 IP (tos 0x0, ttl 64, id 53564, offset 0, flags [none], proto UDP (17), length 339) 10.10.1.1.67 > 10.10.1.163.68: BOOTP/DHCP, Reply, length 311, xid 0xc9779c2a, Flags [none] Your-IP 10.10.1.163 Server-IP 10.10.1.1 Client-Ethernet-Address 00:0c:xx:xx:xx:d5 Vendor-rfc1048 Extensions Magic Cookie 0x63825363 DHCP-Message Option 53, length 1: ACK Server-ID Option 54, length 4: 10.10.1.1 Lease-Time Option 51, length 4: 86400 RN Option 58, length 4: 43200 RB Option 59, length 4: 75600 Subnet-Mask Option 1, length 4: 255.255.255.0 BR Option 28, length 4: 10.10.1.255 Domain-Name-Server Option 6, length 4: 10.10.1.1 Hostname Option 12, length 14: "test-ubuntu" T252 Option 252, length 1: 10 Default-Gateway Option 3, length 4: 10.10.1.1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。