当前位置:   article > 正文

深度学习调参策略简要总结

深度学习调参策略简要总结

深度学习调参策略

欠拟合:(欠拟合是指模型不能在训练集上获得足够低的误差。)
  1. 导致欠拟合的原因:

    模型复杂度不足

    数据量不足

    特征选择不当

    训练时间不足

  2. 解决策略:

    更换模型

    增加模型复杂度

    在模型中增加特征

过拟合:(过拟合是指模型在训练集上表现很好,但在测试集上却表现很差。)
  1. 导致过拟合的原因:

    训练数据集样本单一,样本不足

    训练数据中噪声干扰过大

    模型过于复杂。

  2. 解决策略:

    获取和使用更多的数据(数据增强)

    降低模型复杂度

    正则化

    dropout

    提前终止

看loss识性能:

train loss 不断下降,test loss不断下降,说明网络在不断学习
train loss 不断下降,test loss趋于不变,说明网络可能过拟合
train loss 趋于不变,test loss不断下降,说明数据集存在问题
train loss 趋于不变,test loss 趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目
train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题

超参数优化:

learning rate(学习率):

当学习率设置的过小时,收敛过程将变得十分缓慢。

而当学习率设置的过大时,梯度可能会在最小值附近来回震荡,甚至可能无法收敛。

自然语言处理类模型设置在1e-5级别附近

计算机视觉类模型在1e-3级别附近

可以采用warmup、余弦衰减、等策略,可以设置动量

batch size(批量大小):

在深度学习中,每次训练在训练集中一次性取batch size个样本训练。因为GPU的线程一般为 2 n 2^n 2n,batch size大小一般设置为 2 n 2^n 2n(64,128),以使得GPU内部的并行计算效率最高。

batch size较小,训练速度慢、占用内存低。泛化能力上升。准确率上升速度慢,但是实际使用起来精度较高。

batch size较大,训练速度快、占用内存高。泛化能力下降。准确率上升速度快,但是实际使用起来精度不高。

epoch:

1个epoch等于使用训练集中的全部样本训练一次,epoch的值就是整个数据集被训练几次。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/106185
推荐阅读
相关标签
  

闽ICP备14008679号