当前位置:   article > 正文

【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解(SVMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对时间序列数据的高精度预测。以下是对该算法的详细介绍:

  1. 单变量分解(SVMD)

    • SVMD是一种针对单变量时间序列的分解方法。它旨在将原始时间序列分解为多个成分或模态,以便更好地理解和预测其行为。这种分解可能基于矩阵分解技术,如奇异值分解(SVD),或其他适合单变量时间序列分解的技术。

    • 通过SVMD,可以将原始时间序列转化为多个组成部分,每个组分可能代表不同的频率、趋势或周期性行为。

  2. 多尺度特征提取(MFE)

    • MFE技术用于从SVMD分解得到的各个成分中提取多尺度特征。这些特征可能包括统计特性、频域特性、时域特性等,能够全面描述每个成分在不同尺度上的行为。

    • 通过MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

  3. 支持向量机(SVM)

    • SVM是一种常用的监督学习算法,特别适用于处理分类和回归问题。在SVMD_MFE_SVM_LSTM算法中,SVM用于初步预测SVMD分解后每个成分的未来值。

    • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个分解成分。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

  4. 长短期记忆神经网络(LSTM)

    • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在SVMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

    • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个分解成分进行更精确的预测。

综上所述,SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解、多尺度特征提取、支持向量机和长短期记忆神经网络的优点,旨在实现对时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/165446
推荐阅读
相关标签
  

闽ICP备14008679号